root/maint/gnulib/lib/sha1.c

/* [previous][next][first][last][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sha1_init_ctx
  2. set_uint32
  3. sha1_read_ctx
  4. sha1_finish_ctx
  5. sha1_buffer
  6. sha1_process_bytes
  7. sha1_process_block

   1 /* sha1.c - Functions to compute SHA1 message digest of files or
   2    memory blocks according to the NIST specification FIPS-180-1.
   3 
   4    Copyright (C) 2000-2001, 2003-2006, 2008-2021 Free Software Foundation, Inc.
   5 
   6    This file is free software: you can redistribute it and/or modify
   7    it under the terms of the GNU Lesser General Public License as
   8    published by the Free Software Foundation; either version 2.1 of the
   9    License, or (at your option) any later version.
  10 
  11    This file is distributed in the hope that it will be useful,
  12    but WITHOUT ANY WARRANTY; without even the implied warranty of
  13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14    GNU Lesser General Public License for more details.
  15 
  16    You should have received a copy of the GNU Lesser General Public License
  17    along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
  18 
  19 /* Written by Scott G. Miller
  20    Credits:
  21       Robert Klep <robert@ilse.nl>  -- Expansion function fix
  22 */
  23 
  24 #include <config.h>
  25 
  26 /* Specification.  */
  27 #if HAVE_OPENSSL_SHA1
  28 # define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
  29 #endif
  30 #include "sha1.h"
  31 
  32 #include <stdalign.h>
  33 #include <stdint.h>
  34 #include <string.h>
  35 
  36 #include <byteswap.h>
  37 #ifdef WORDS_BIGENDIAN
  38 # define SWAP(n) (n)
  39 #else
  40 # define SWAP(n) bswap_32 (n)
  41 #endif
  42 
  43 #if ! HAVE_OPENSSL_SHA1
  44 
  45 /* This array contains the bytes used to pad the buffer to the next
  46    64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
  47 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
  48 
  49 
  50 /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
  51    initialize it to the start constants of the SHA1 algorithm.  This
  52    must be called before using hash in the call to sha1_hash.  */
  53 void
  54 sha1_init_ctx (struct sha1_ctx *ctx)
     /* [previous][next][first][last][top][bottom][index][help] */
  55 {
  56   ctx->A = 0x67452301;
  57   ctx->B = 0xefcdab89;
  58   ctx->C = 0x98badcfe;
  59   ctx->D = 0x10325476;
  60   ctx->E = 0xc3d2e1f0;
  61 
  62   ctx->total[0] = ctx->total[1] = 0;
  63   ctx->buflen = 0;
  64 }
  65 
  66 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
  67    If your architecture allows unaligned access this is equivalent to
  68    * (uint32_t *) cp = v  */
  69 static void
  70 set_uint32 (char *cp, uint32_t v)
     /* [previous][next][first][last][top][bottom][index][help] */
  71 {
  72   memcpy (cp, &v, sizeof v);
  73 }
  74 
  75 /* Put result from CTX in first 20 bytes following RESBUF.  The result
  76    must be in little endian byte order.  */
  77 void *
  78 sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
     /* [previous][next][first][last][top][bottom][index][help] */
  79 {
  80   char *r = resbuf;
  81   set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
  82   set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
  83   set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
  84   set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
  85   set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E));
  86 
  87   return resbuf;
  88 }
  89 
  90 /* Process the remaining bytes in the internal buffer and the usual
  91    prolog according to the standard and write the result to RESBUF.  */
  92 void *
  93 sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
     /* [previous][next][first][last][top][bottom][index][help] */
  94 {
  95   /* Take yet unprocessed bytes into account.  */
  96   uint32_t bytes = ctx->buflen;
  97   size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
  98 
  99   /* Now count remaining bytes.  */
 100   ctx->total[0] += bytes;
 101   if (ctx->total[0] < bytes)
 102     ++ctx->total[1];
 103 
 104   /* Put the 64-bit file length in *bits* at the end of the buffer.  */
 105   ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
 106   ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
 107 
 108   memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
 109 
 110   /* Process last bytes.  */
 111   sha1_process_block (ctx->buffer, size * 4, ctx);
 112 
 113   return sha1_read_ctx (ctx, resbuf);
 114 }
 115 
 116 /* Compute SHA1 message digest for LEN bytes beginning at BUFFER.  The
 117    result is always in little endian byte order, so that a byte-wise
 118    output yields to the wanted ASCII representation of the message
 119    digest.  */
 120 void *
 121 sha1_buffer (const char *buffer, size_t len, void *resblock)
     /* [previous][next][first][last][top][bottom][index][help] */
 122 {
 123   struct sha1_ctx ctx;
 124 
 125   /* Initialize the computation context.  */
 126   sha1_init_ctx (&ctx);
 127 
 128   /* Process whole buffer but last len % 64 bytes.  */
 129   sha1_process_bytes (buffer, len, &ctx);
 130 
 131   /* Put result in desired memory area.  */
 132   return sha1_finish_ctx (&ctx, resblock);
 133 }
 134 
 135 void
 136 sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
     /* [previous][next][first][last][top][bottom][index][help] */
 137 {
 138   /* When we already have some bits in our internal buffer concatenate
 139      both inputs first.  */
 140   if (ctx->buflen != 0)
 141     {
 142       size_t left_over = ctx->buflen;
 143       size_t add = 128 - left_over > len ? len : 128 - left_over;
 144 
 145       memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
 146       ctx->buflen += add;
 147 
 148       if (ctx->buflen > 64)
 149         {
 150           sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
 151 
 152           ctx->buflen &= 63;
 153           /* The regions in the following copy operation cannot overlap,
 154              because ctx->buflen < 64 ≤ (left_over + add) & ~63.  */
 155           memcpy (ctx->buffer,
 156                   &((char *) ctx->buffer)[(left_over + add) & ~63],
 157                   ctx->buflen);
 158         }
 159 
 160       buffer = (const char *) buffer + add;
 161       len -= add;
 162     }
 163 
 164   /* Process available complete blocks.  */
 165   if (len >= 64)
 166     {
 167 #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
 168 # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
 169       if (UNALIGNED_P (buffer))
 170         while (len > 64)
 171           {
 172             sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
 173             buffer = (const char *) buffer + 64;
 174             len -= 64;
 175           }
 176       else
 177 #endif
 178         {
 179           sha1_process_block (buffer, len & ~63, ctx);
 180           buffer = (const char *) buffer + (len & ~63);
 181           len &= 63;
 182         }
 183     }
 184 
 185   /* Move remaining bytes in internal buffer.  */
 186   if (len > 0)
 187     {
 188       size_t left_over = ctx->buflen;
 189 
 190       memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
 191       left_over += len;
 192       if (left_over >= 64)
 193         {
 194           sha1_process_block (ctx->buffer, 64, ctx);
 195           left_over -= 64;
 196           /* The regions in the following copy operation cannot overlap,
 197              because left_over ≤ 64.  */
 198           memcpy (ctx->buffer, &ctx->buffer[16], left_over);
 199         }
 200       ctx->buflen = left_over;
 201     }
 202 }
 203 
 204 /* --- Code below is the primary difference between md5.c and sha1.c --- */
 205 
 206 /* SHA1 round constants */
 207 #define K1 0x5a827999
 208 #define K2 0x6ed9eba1
 209 #define K3 0x8f1bbcdc
 210 #define K4 0xca62c1d6
 211 
 212 /* Round functions.  Note that F2 is the same as F4.  */
 213 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
 214 #define F2(B,C,D) (B ^ C ^ D)
 215 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
 216 #define F4(B,C,D) (B ^ C ^ D)
 217 
 218 /* Process LEN bytes of BUFFER, accumulating context into CTX.
 219    It is assumed that LEN % 64 == 0.
 220    Most of this code comes from GnuPG's cipher/sha1.c.  */
 221 
 222 void
 223 sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
     /* [previous][next][first][last][top][bottom][index][help] */
 224 {
 225   const uint32_t *words = buffer;
 226   size_t nwords = len / sizeof (uint32_t);
 227   const uint32_t *endp = words + nwords;
 228   uint32_t x[16];
 229   uint32_t a = ctx->A;
 230   uint32_t b = ctx->B;
 231   uint32_t c = ctx->C;
 232   uint32_t d = ctx->D;
 233   uint32_t e = ctx->E;
 234   uint32_t lolen = len;
 235 
 236   /* First increment the byte count.  RFC 1321 specifies the possible
 237      length of the file up to 2^64 bits.  Here we only compute the
 238      number of bytes.  Do a double word increment.  */
 239   ctx->total[0] += lolen;
 240   ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
 241 
 242 #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
 243 
 244 #define M(I) ( tm =   x[I&0x0f] ^ x[(I-14)&0x0f] \
 245                     ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
 246                , (x[I&0x0f] = rol(tm, 1)) )
 247 
 248 #define R(A,B,C,D,E,F,K,M)  do { E += rol( A, 5 )     \
 249                                       + F( B, C, D )  \
 250                                       + K             \
 251                                       + M;            \
 252                                  B = rol( B, 30 );    \
 253                                } while(0)
 254 
 255   while (words < endp)
 256     {
 257       uint32_t tm;
 258       int t;
 259       for (t = 0; t < 16; t++)
 260         {
 261           x[t] = SWAP (*words);
 262           words++;
 263         }
 264 
 265       R( a, b, c, d, e, F1, K1, x[ 0] );
 266       R( e, a, b, c, d, F1, K1, x[ 1] );
 267       R( d, e, a, b, c, F1, K1, x[ 2] );
 268       R( c, d, e, a, b, F1, K1, x[ 3] );
 269       R( b, c, d, e, a, F1, K1, x[ 4] );
 270       R( a, b, c, d, e, F1, K1, x[ 5] );
 271       R( e, a, b, c, d, F1, K1, x[ 6] );
 272       R( d, e, a, b, c, F1, K1, x[ 7] );
 273       R( c, d, e, a, b, F1, K1, x[ 8] );
 274       R( b, c, d, e, a, F1, K1, x[ 9] );
 275       R( a, b, c, d, e, F1, K1, x[10] );
 276       R( e, a, b, c, d, F1, K1, x[11] );
 277       R( d, e, a, b, c, F1, K1, x[12] );
 278       R( c, d, e, a, b, F1, K1, x[13] );
 279       R( b, c, d, e, a, F1, K1, x[14] );
 280       R( a, b, c, d, e, F1, K1, x[15] );
 281       R( e, a, b, c, d, F1, K1, M(16) );
 282       R( d, e, a, b, c, F1, K1, M(17) );
 283       R( c, d, e, a, b, F1, K1, M(18) );
 284       R( b, c, d, e, a, F1, K1, M(19) );
 285       R( a, b, c, d, e, F2, K2, M(20) );
 286       R( e, a, b, c, d, F2, K2, M(21) );
 287       R( d, e, a, b, c, F2, K2, M(22) );
 288       R( c, d, e, a, b, F2, K2, M(23) );
 289       R( b, c, d, e, a, F2, K2, M(24) );
 290       R( a, b, c, d, e, F2, K2, M(25) );
 291       R( e, a, b, c, d, F2, K2, M(26) );
 292       R( d, e, a, b, c, F2, K2, M(27) );
 293       R( c, d, e, a, b, F2, K2, M(28) );
 294       R( b, c, d, e, a, F2, K2, M(29) );
 295       R( a, b, c, d, e, F2, K2, M(30) );
 296       R( e, a, b, c, d, F2, K2, M(31) );
 297       R( d, e, a, b, c, F2, K2, M(32) );
 298       R( c, d, e, a, b, F2, K2, M(33) );
 299       R( b, c, d, e, a, F2, K2, M(34) );
 300       R( a, b, c, d, e, F2, K2, M(35) );
 301       R( e, a, b, c, d, F2, K2, M(36) );
 302       R( d, e, a, b, c, F2, K2, M(37) );
 303       R( c, d, e, a, b, F2, K2, M(38) );
 304       R( b, c, d, e, a, F2, K2, M(39) );
 305       R( a, b, c, d, e, F3, K3, M(40) );
 306       R( e, a, b, c, d, F3, K3, M(41) );
 307       R( d, e, a, b, c, F3, K3, M(42) );
 308       R( c, d, e, a, b, F3, K3, M(43) );
 309       R( b, c, d, e, a, F3, K3, M(44) );
 310       R( a, b, c, d, e, F3, K3, M(45) );
 311       R( e, a, b, c, d, F3, K3, M(46) );
 312       R( d, e, a, b, c, F3, K3, M(47) );
 313       R( c, d, e, a, b, F3, K3, M(48) );
 314       R( b, c, d, e, a, F3, K3, M(49) );
 315       R( a, b, c, d, e, F3, K3, M(50) );
 316       R( e, a, b, c, d, F3, K3, M(51) );
 317       R( d, e, a, b, c, F3, K3, M(52) );
 318       R( c, d, e, a, b, F3, K3, M(53) );
 319       R( b, c, d, e, a, F3, K3, M(54) );
 320       R( a, b, c, d, e, F3, K3, M(55) );
 321       R( e, a, b, c, d, F3, K3, M(56) );
 322       R( d, e, a, b, c, F3, K3, M(57) );
 323       R( c, d, e, a, b, F3, K3, M(58) );
 324       R( b, c, d, e, a, F3, K3, M(59) );
 325       R( a, b, c, d, e, F4, K4, M(60) );
 326       R( e, a, b, c, d, F4, K4, M(61) );
 327       R( d, e, a, b, c, F4, K4, M(62) );
 328       R( c, d, e, a, b, F4, K4, M(63) );
 329       R( b, c, d, e, a, F4, K4, M(64) );
 330       R( a, b, c, d, e, F4, K4, M(65) );
 331       R( e, a, b, c, d, F4, K4, M(66) );
 332       R( d, e, a, b, c, F4, K4, M(67) );
 333       R( c, d, e, a, b, F4, K4, M(68) );
 334       R( b, c, d, e, a, F4, K4, M(69) );
 335       R( a, b, c, d, e, F4, K4, M(70) );
 336       R( e, a, b, c, d, F4, K4, M(71) );
 337       R( d, e, a, b, c, F4, K4, M(72) );
 338       R( c, d, e, a, b, F4, K4, M(73) );
 339       R( b, c, d, e, a, F4, K4, M(74) );
 340       R( a, b, c, d, e, F4, K4, M(75) );
 341       R( e, a, b, c, d, F4, K4, M(76) );
 342       R( d, e, a, b, c, F4, K4, M(77) );
 343       R( c, d, e, a, b, F4, K4, M(78) );
 344       R( b, c, d, e, a, F4, K4, M(79) );
 345 
 346       a = ctx->A += a;
 347       b = ctx->B += b;
 348       c = ctx->C += c;
 349       d = ctx->D += d;
 350       e = ctx->E += e;
 351     }
 352 }
 353 
 354 #endif
 355 
 356 /*
 357  * Hey Emacs!
 358  * Local Variables:
 359  * coding: utf-8
 360  * End:
 361  */

/* [previous][next][first][last][top][bottom][index][help] */