
Pacemaker Administration

Managing Pacemaker Clusters

, Written by the Pacemaker project contributors

Pacemaker Administration: Managing Pacemaker Clusters

by

Abstract

This document has instructions and tips for system administrators who need to manage high-availability clusters using
Pacemaker.

Copyright © 2009-2019 The Pacemaker project contributors.

The text of and illustrations in this document are licensed under version 4.0 or later of the Creative Commons
Attribution-ShareAlike International Public License ("CC-BY-SA")1.

In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for
the original version.

In addition to the requirements of this license, the following activities are looked upon favorably:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the
authors of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors
time to provide updated documents. This notification should describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or else described
in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any hardcopy
or CD-ROM expression of the author(s) work.

1 An explanation of CC-BY-SA is available at https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Table of Contents
Preface ... viii

Document Conventions ... viii
Typographic Conventions .. viii
Pull-quote Conventions ... ix
Notes and Warnings .. x

We Need Feedback! .. x
1. Read-Me-First ... 1

The Scope of this Document .. 1
What Is Pacemaker? ... 1
Cluster Architecture .. 2
Pacemaker Architecture ... 2
Node Redundancy Designs ... 4

2. Installing Cluster Software .. 5
Installing the Software ... 5
Enabling Pacemaker .. 5

Enabling Pacemaker For Corosync version 2 and greater ... 5
3. The Cluster Layer ... 7

Pacemaker and the Cluster Layer .. 7
Managing Nodes in a Corosync-Based Cluster ... 7

Adding a New Corosync Node .. 7
Removing a Corosync Node ... 7
Replacing a Corosync Node ... 8

4. Configuring Pacemaker .. 9
Configuration Using Higher-level Tools ... 9
Configuration Using Pacemaker’s Command-Line Tools ... 9
Working with CIB Properties .. 10
Querying and Setting Cluster Options ... 10

When Options are Listed More Than Once .. 11
Connecting from a Remote Machine .. 11

5. Using Pacemaker Command-Line Tools .. 13
Controlling Command Line Output .. 13
Monitor a Cluster with crm_mon ... 13

Styling crm_mon output ... 14
Edit the CIB XML with cibadmin .. 15
Batch Configuration Changes with crm_shadow ... 16
Simulate Cluster Activity with crm_simulate ... 17

Replaying cluster decision-making logic ... 18
Why decisions were made .. 18
Visualizing the action sequence ... 18
What-if scenarios .. 19

Manage Node Attributes, Cluster Options and Defaults with crm_attribute and
attrd_updater .. 20
Other Commonly Used Tools .. 20

6. Troubleshooting Cluster Problems .. 22
Logging ... 22
Transitions ... 22
Further Information About Troubleshooting ... 23

7. Upgrading a Pacemaker Cluster ... 24
Pacemaker Versioning .. 24
Upgrading Cluster Software .. 25

Complete Cluster Shutdown .. 25

iii

Pacemaker Administration

Rolling (node by node) .. 26
Detach and Reattach .. 27

Upgrading the Configuration ... 27
What Changed in 2.0 ... 29
What Changed in 1.0 ... 30

New .. 30
Changed .. 30
Removed ... 31

8. Resource Agents ... 32
Resource Agent Actions ... 32
OCF Resource Agents .. 32

Location of Custom Scripts ... 32
Actions .. 32
How are OCF Return Codes Interpreted? .. 33
OCF Return Codes .. 34

LSB Resource Agents (Init Scripts) .. 35
LSB Compliance ... 35

A. Revision History ... 37
Index ... 38

iv

List of Figures
1.1. Example Cluster Stack .. 2
1.2. Internal Components ... 3
1.3. Active/Passive Redundancy .. 4
1.4. Shared Failover .. 4
1.5. N to N Redundancy .. 4

v

List of Tables
4.1. Environment Variables Used to Connect to Remote Instances of the CIB 11
4.2. Extra top-level CIB properties for remote access .. 12
5.1. Types of Node Attributes ... 20
7.1. Upgrade Methods .. 25
7.2. Version Compatibility Table ... 26
8.1. Required Actions for OCF Agents ... 32
8.2. Optional Actions for OCF Resource Agents ... 33
8.3. Types of recovery performed by the cluster ... 33
8.4. OCF Return Codes and their Recovery Types .. 34

vi

List of Examples
2.1. Corosync configuration file for two nodes myhost1 and myhost2 ... 5
2.2. Corosync configuration file for three nodes myhost1, myhost2 and myhost3 6
4.1. XML attributes set for a cib element .. 10
4.2. Deleting an option that is listed twice ... 11
5.1. Sample output from crm_mon -1 ... 14
5.2. Sample output from crm_mon -n -1 ... 14
5.3. Safely using an editor to modify the cluster configuration .. 15
5.4. Safely using an editor to modify only the resources section .. 16
5.5. Searching for STONITH-related configuration items ... 16
5.6. Creating and displaying the active sandbox .. 16
5.7. Use sandbox to make multiple changes all at once, discard them, and verify real configuration
is untouched ... 17
5.8. Simulate cluster response to a given CIB .. 18
5.9. Simulate cluster response to current live CIB or shadow CIB .. 18
5.10. Generate a visual graph of cluster actions from a saved CIB ... 18
5.11. Small Cluster Transition ... 19
5.12. Complex Cluster Transition ... 19

vii

Preface

Table of Contents
Document Conventions ... viii

Typographic Conventions .. viii
Pull-quote Conventions ... ix
Notes and Warnings .. x

We Need Feedback! .. x

Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to specific
pieces of information.

Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the shell
prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all
distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part
of a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key combination:
a set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values mentioned
within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog-box text;
labeled buttons; check-box and radio-button labels; menu titles and submenu titles. For example:

viii

Preface

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, select the Left-handed mouse check box and click Close
to switch the primary mouse button from the left to the right (making the mouse suitable
for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories →

Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit → Paste from the gedit menu
bar.

The above text includes application names; system-wide menu names and items; application-specific menu
names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance.
For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file system. For
example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command.
It will return a result as follows: package-version-release.

Note the words in bold italics above: username, domain.name, file-system, package, version and release.
Each word is a placeholder, either for text you enter when issuing a command or for text displayed by
the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

ix

Preface

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have
no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled “Important” will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla1 against the product Pacemaker
Administration.

When submitting a bug report, be sure to mention the manual's identifier: Pacemaker_Administration

If you have a suggestion for improving the documentation, try to be as specific as possible when describing
it. If you have found an error, please include the section number and some of the surrounding text so we
can find it easily.

1 http://bugs.clusterlabs.org

x

http://bugs.clusterlabs.org

Chapter 1. Read-Me-First

Table of Contents
The Scope of this Document .. 1
What Is Pacemaker? ... 1
Cluster Architecture .. 2
Pacemaker Architecture ... 2
Node Redundancy Designs ... 4

The Scope of this Document
The purpose of this document is to help system administrators learn how to manage a Pacemaker cluster.

System administrators may be interested in other parts of the Pacemaker documentation set [https://
www.clusterlabs.org/pacemaker/doc/], such as Clusters from Scratch, a step-by-step guide to setting up
an example cluster, and Pacemaker Explained, an exhaustive reference for cluster configuration.

Multiple higher-level tools (both command-line and GUI) are available to simplify cluster management.
However, this document focuses on the lower-level command-line tools that come with Pacemaker itself.
The concepts are applicable to the higher-level tools, though the syntax would differ.

What Is Pacemaker?
Pacemaker is a high-availability cluster resource manager — software that runs on a set of hosts (a cluster
of nodes) in order to preserve integrity and minimize downtime of desired services (resources). 1 It is
maintained by the ClusterLabs [https://www.ClusterLabs.org/] community.

Pacemaker’s key features include:

• Detection of and recovery from node- and service-level failures

• Ability to ensure data integrity by fencing faulty nodes

• Support for one or more nodes per cluster

• Support for multiple resource interface standards (anything that can be scripted can be clustered)

• Support (but no requirement) for shared storage

• Support for practically any redundancy configuration (active/passive, N+1, etc.)

• Automatically replicated configuration that can be updated from any node

• Ability to specify cluster-wide relationships between services, such as ordering, colocation and anti-
colocation

• Support for advanced service types, such as clones (services that need to be active on multiple nodes),
stateful resources (clones that can run in one of two modes), and containerized services

1 Cluster is sometimes used in other contexts to refer to hosts grouped together for other purposes, such as high-performance computing (HPC),
but Pacemaker is not intended for those purposes.

1

https://www.clusterlabs.org/pacemaker/doc/
https://www.clusterlabs.org/pacemaker/doc/
https://www.clusterlabs.org/pacemaker/doc/
https://www.ClusterLabs.org/
https://www.ClusterLabs.org/

Read-Me-First

• Unified, scriptable cluster management tools

Fencing

Fencing, also known as STONITH (an acronym for Shoot The Other Node In The Head), is the
ability to ensure that it is not possible for a node to be running a service. This is accomplished
via fence devices such as intelligent power switches that cut power to the target, or intelligent
network switches that cut the target’s access to the local network.

Pacemaker represents fence devices as a special class of resource.

A cluster cannot safely recover from certain failure conditions, such as an unresponsive node,
without fencing.

Cluster Architecture
At a high level, a cluster can be viewed as having these parts (which together are often referred to as the
cluster stack):

• Resources: These are the reason for the cluster’s being — the services that need to be kept highly
available.

• Resource agents: These are scripts or operating system components that start, stop, and monitor
resources, given a set of resource parameters. These provide a uniform interface between Pacemaker
and the managed services.

• Fence agents: These are scripts that execute node fencing actions, given a target and fence device
parameters.

• Cluster membership layer: This component provides reliable messaging, membership, and quorum
information about the cluster. Currently, Pacemaker supports Corosync [http://www.corosync.org/] as
this layer.

• Cluster resource manager: Pacemaker provides the brain that processes and reacts to events that occur
in the cluster. These events may include nodes joining or leaving the cluster; resource events caused by
failures, maintenance, or scheduled activities; and other administrative actions. To achieve the desired
availability, Pacemaker may start and stop resources and fence nodes.

• Cluster tools: These provide an interface for users to interact with the cluster. Various command-line
and graphical (GUI) interfaces are available.

Most managed services are not, themselves, cluster-aware. However, many popular open-source cluster
filesystems make use of a common Distributed Lock Manager (DLM), which makes direct use of Corosync
for its messaging and membership capabilities and Pacemaker for the ability to fence nodes.

Figure 1.1. Example Cluster Stack

Pacemaker Architecture
Pacemaker itself is composed of multiple daemons that work together:

• pacemakerd

2

http://www.corosync.org/
http://www.corosync.org/

Read-Me-First

• pacemaker-attrd

• pacemaker-based

• pacemaker-controld

• pacemaker-execd

• pacemaker-fenced

• pacemaker-schedulerd

Figure 1.2. Internal Components

The Pacemaker master process (pacemakerd) spawns all the other daemons, and respawns them if they
unexpectedly exit.

The Cluster Information Base (CIB) is an XML [https://en.wikipedia.org/wiki/XML] representation of
the cluster’s configuration and the state of all nodes and resources. The CIB manager (pacemaker-based)
keeps the CIB synchronized across the cluster, and handles requests to modify it.

The attribute manager (pacemaker-attrd) maintains a database of attributes for all nodes, keeps it
synchronized across the cluster, and handles requests to modify them. These attributes are usually recorded
in the CIB.

Given a snapshot of the CIB as input, the scheduler (pacemaker-schedulerd) determines what actions are
necessary to achieve the desired state of the cluster.

The local executor (pacemaker-execd) handles requests to execute resource agents on the local cluster
node, and returns the result.

The fencer (pacemaker-fenced) handles requests to fence nodes. Given a target node, the fencer decides
which cluster node(s) should execute which fencing device(s), and calls the necessary fencing agents
(either directly, or via requests to the fencer peers on other nodes), and returns the result.

The controller (pacemaker-controld) is Pacemaker’s coordinator, maintaining a consistent view of the
cluster membership and orchestrating all the other components.

Pacemaker centralizes cluster decision-making by electing one of the controller instances as the Designated
Controller (DC). Should the elected DC process (or the node it is on) fail, a new one is quickly established.
The DC responds to cluster events by taking a current snapshot of the CIB, feeding it to the scheduler, then
asking the executors (either directly on the local node, or via requests to controller peers on other nodes)
and the fencer to execute any necessary actions.

Old daemon names

The Pacemaker daemons were renamed in version 2.0. You may still find references to the old
names, especially in documentation targeted to version 1.1.

Old name New name

attrd pacemaker-attrd

cib pacemaker-based

crmd pacemaker-controld

3

https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XML

Read-Me-First

Old name New name

lrmd pacemaker-execd

stonithd pacemaker-fenced

pacemaker_remoted pacemaker-remoted

Node Redundancy Designs
Pacemaker supports practically any node redundancy configuration [https://en.wikipedia.org/wiki/High-
availability_cluster#Node_configurations] including Active/Active, Active/Passive, N+1, N+M, N-to-1
and N-to-N.

Active/passive clusters with two (or more) nodes using Pacemaker and DRBD [https://en.wikipedia.org/
wiki/Distributed_Replicated_Block_Device:] are a cost-effective high-availability solution for many
situations. One of the nodes provides the desired services, and if it fails, the other node takes over.

Figure 1.3. Active/Passive Redundancy

Pacemaker also supports multiple nodes in a shared-failover design, reducing hardware costs by allowing
several active/passive clusters to be combined and share a common backup node.

Figure 1.4. Shared Failover

When shared storage is available, every node can potentially be used for failover. Pacemaker can even run
multiple copies of services to spread out the workload.

Figure 1.5. N to N Redundancy

4

https://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
https://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
https://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
https://en.wikipedia.org/wiki/Distributed_Replicated_Block_Device:
https://en.wikipedia.org/wiki/Distributed_Replicated_Block_Device:
https://en.wikipedia.org/wiki/Distributed_Replicated_Block_Device:

Chapter 2. Installing Cluster Software

Table of Contents
Installing the Software ... 5
Enabling Pacemaker .. 5

Enabling Pacemaker For Corosync version 2 and greater ... 5

Installing the Software
Most major Linux distributions have pacemaker packages in their standard package repositories, or the
software can be built from source code. See the Install wiki page [http://clusterlabs.org/wiki/Install] for
details.

Enabling Pacemaker

Enabling Pacemaker For Corosync version 2 and greater
High-level cluster management tools are available that can configure corosync for you. This document
focuses on the lower-level details if you want to configure corosync yourself.

Corosync configuration is normally located in /etc/corosync/corosync.conf.

Example 2.1. Corosync configuration file for two nodes myhost1 and myhost2

totem {
version: 2
secauth: off
cluster_name: mycluster
transport: udpu
}

nodelist {
 node {
 ring0_addr: myhost1
 nodeid: 1
 }
 node {
 ring0_addr: myhost2
 nodeid: 2
 }
}

quorum {
provider: corosync_votequorum
two_node: 1
}

logging {

5

http://clusterlabs.org/wiki/Install
http://clusterlabs.org/wiki/Install

Installing Cluster Software

to_syslog: yes
}

Example 2.2. Corosync configuration file for three nodes myhost1, myhost2 and
myhost3

totem {
version: 2
secauth: off
cluster_name: mycluster
transport: udpu
}

nodelist {
 node {
 ring0_addr: myhost1
 nodeid: 1
 }
 node {
 ring0_addr: myhost2
 nodeid: 2
 }
 node {
 ring0_addr: myhost3
 nodeid: 3
 }
}

quorum {
provider: corosync_votequorum

}

logging {
to_syslog: yes
}

In the above examples, the totem section defines what protocol version and options (including
encryption) to use, 1 and gives the cluster a unique name (mycluster in these examples).

The node section lists the nodes in this cluster.

The quorum section defines how the cluster uses quorum. The important thing is that two-node clusters
must be handled specially, so two_node: 1 must be defined for two-node clusters (and only for two-
node clusters).

The logging section should be self-explanatory.

1 Please consult the Corosync website (http://www.corosync.org/) and documentation for details on enabling encryption and peer authentication
for the cluster.

6

http://www.corosync.org/

Chapter 3. The Cluster Layer

Table of Contents
Pacemaker and the Cluster Layer .. 7
Managing Nodes in a Corosync-Based Cluster ... 7

Adding a New Corosync Node .. 7
Removing a Corosync Node ... 7
Replacing a Corosync Node ... 8

Pacemaker and the Cluster Layer
Pacemaker utilizes an underlying cluster layer for two purposes:

• obtaining quorum

• messaging between nodes

Currently, only Corosync 2 and later is supported for this layer.

Managing Nodes in a Corosync-Based Cluster

Adding a New Corosync Node

To add a new node:

1. Install Corosync and Pacemaker on the new host.

2. Copy /etc/corosync/corosync.conf and /etc/corosync/authkey (if it exists) from
an existing node. You may need to modify the mcastaddr option to match the new node’s IP address.

3. Start the cluster software on the new host. If a log message containing "Invalid digest" appears from
Corosync, the keys are not consistent between the machines.

Removing a Corosync Node

Because the messaging and membership layers are the authoritative source for cluster nodes, deleting them
from the CIB is not a complete solution. First, one must arrange for corosync to forget about the node
(pcmk-1 in the example below).

1. Stop the cluster on the host to be removed. How to do this will vary with your operating system and
installed versions of cluster software, for example, pcs cluster stop if you are using pcs for
cluster management.

2. From one of the remaining active cluster nodes, tell Pacemaker to forget about the removed host, which
will also delete the node from the CIB:

7

The Cluster Layer

crm_node -R pcmk-1

Replacing a Corosync Node

To replace an existing cluster node:

1. Make sure the old node is completely stopped.

2. Give the new machine the same hostname and IP address as the old one.

3. Follow the procedure above for adding a node.

8

Chapter 4. Configuring Pacemaker

Table of Contents
Configuration Using Higher-level Tools ... 9
Configuration Using Pacemaker’s Command-Line Tools ... 9
Working with CIB Properties .. 10
Querying and Setting Cluster Options ... 10

When Options are Listed More Than Once .. 11
Connecting from a Remote Machine .. 11

Pacemaker’s configuration, the CIB, is stored in XML format. Cluster administrators have multiple options
for modifying the configuration either via the XML, or at a more abstract (and easier for humans to
understand) level.

Pacemaker reacts to configuration changes as soon as they are saved. Pacemaker’s command-line tools
and most higher-level tools provide the ability to batch changes together and commit them at once, rather
than make a series of small changes, which could cause avoid unnecessary actions as Pacemaker responds
to each change individually.

Pacemaker tracks revisions to the configuration and will reject any update older than the current revision.
Thus, it is a good idea to serialize all changes to the configuration. Avoid attempting simultaneous changes,
whether on the same node or different nodes, and whether manually or using some automated configuration
tool.

Note

It is not necessary to update the configuration on all cluster nodes. Pacemaker immediately
synchronizes changes to all active members of the cluster. To reduce bandwidth, the cluster only
broadcasts the incremental updates that result from your changes and uses checksums to ensure
that each copy is consistent.

Configuration Using Higher-level Tools
Most users will benefit from using higher-level tools provided by projects separate from Pacemaker. Some
of the most commonly used include the crm shell, hawk, and pcs. 1

See those projects' documentation for details on how to configure Pacemaker using them.

Configuration Using Pacemaker’s Command-
Line Tools

Pacemaker provides lower-level, command-line tools to manage the cluster. Most configuration tasks can
be performed with these tools, without needing any XML knowledge.

To enable STONITH for example, one could run:

crm_attribute --name stonith-enabled --update 1

1 For a list, see "Configuration Tools" at https://clusterlabs.org/components.html

9

https://clusterlabs.org/components.html

Configuring Pacemaker

Or, to check whether node1 is allowed to run resources, there is:

crm_standby --query --node node1

Or, to change the failure threshold of my-test-rsc, one can use:

crm_resource -r my-test-rsc --set-parameter migration-threshold --parameter-value 3 --meta

Examples of using these tools for specific cases will be given throughout this document where appropriate.
See the man pages for further details.

See the section called “Edit the CIB XML with cibadmin” for how to edit the CIB using XML.

See the section called “Batch Configuration Changes with crm_shadow” for a way to make a series of
changes, then commit them all at once to the live cluster.

Working with CIB Properties
Although these fields can be written to by the user, in most cases the cluster will overwrite any values
specified by the user with the "correct" ones.

To change the ones that can be specified by the user, for example admin_epoch, one should use:

cibadmin --modify --xml-text '<cib admin_epoch="42"/>'

A complete set of CIB properties will look something like this:

Example 4.1. XML attributes set for a cib element

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2"
 admin_epoch="42" epoch="116" num_updates="1"
 cib-last-written="Mon Jan 12 15:46:39 2015" update-origin="rhel7-1"
 update-client="crm_attribute" have-quorum="1" dc-uuid="1">

Querying and Setting Cluster Options

Cluster options can be queried and modified using the crm_attribute tool. To get the current value
of cluster-delay, you can run:

crm_attribute --query --name cluster-delay

which is more simply written as

crm_attribute -G -n cluster-delay

If a value is found, you’ll see a result like this:

crm_attribute -G -n cluster-delay
scope=crm_config name=cluster-delay value=60s

If no value is found, the tool will display an error:

crm_attribute -G -n clusta-deway

10

Configuring Pacemaker

scope=crm_config name=clusta-deway value=(null)
Error performing operation: No such device or address

To use a different value (for example, 30 seconds), simply run:

crm_attribute --name cluster-delay --update 30s

To go back to the cluster’s default value, you can delete the value, for example:

crm_attribute --name cluster-delay --delete
Deleted crm_config option: id=cib-bootstrap-options-cluster-delay name=cluster-delay

When Options are Listed More Than Once
If you ever see something like the following, it means that the option you’re modifying is present more
than once.

Example 4.2. Deleting an option that is listed twice

crm_attribute --name batch-limit --delete

Multiple attributes match name=batch-limit in crm_config:
Value: 50 (set=cib-bootstrap-options, id=cib-bootstrap-options-batch-limit)
Value: 100 (set=custom, id=custom-batch-limit)
Please choose from one of the matches above and supply the 'id' with --id

In such cases, follow the on-screen instructions to perform the requested action. To determine which value
is currently being used by the cluster, refer to the Rules section of Pacemaker Explained.

Connecting from a Remote Machine

Provided Pacemaker is installed on a machine, it is possible to connect to the cluster even if the machine
itself is not in the same cluster. To do this, one simply sets up a number of environment variables and runs
the same commands as when working on a cluster node.

Table 4.1. Environment Variables Used to Connect to Remote Instances of the CIB

Environment
Variable

Default Description

CIB_user $USER The user to connect as. Needs to be part of the
haclient group on the target host.

CIB_passwd The user’s password. Read from the command line if
unset.

CIB_server localhost The host to contact

CIB_port The port on which to contact the server; required.

CIB_encrypted TRUE Whether to encrypt network traffic

So, if c001n01 is an active cluster node and is listening on port 1234 for connections, and someuser is
a member of the haclient group, then the following would prompt for someuser's password and return
the cluster’s current configuration:

11

Configuring Pacemaker

export CIB_port=1234; export CIB_server=c001n01; export CIB_user=someuser;
cibadmin -Q

For security reasons, the cluster does not listen for remote connections by default. If you wish to
allow remote access, you need to set the remote-tls-port (encrypted) or remote-clear-port
(unencrypted) CIB properties (i.e., those kept in the cib tag, like num_updates and epoch).

Table 4.2. Extra top-level CIB properties for remote access

Field Default Description

remote-tls-
port

none Listen for encrypted remote connections on this port.

remote-
clear-port

none Listen for plaintext remote connections on this port.

Important

The Pacemaker version on the administration host must be the same or greater than the version(s)
on the cluster nodes. Otherwise, it may not have the schema files necessary to validate the CIB.

12

Chapter 5. Using Pacemaker
Command-Line Tools

Table of Contents
Controlling Command Line Output .. 13
Monitor a Cluster with crm_mon ... 13

Styling crm_mon output ... 14
Edit the CIB XML with cibadmin .. 15
Batch Configuration Changes with crm_shadow ... 16
Simulate Cluster Activity with crm_simulate ... 17

Replaying cluster decision-making logic ... 18
Why decisions were made .. 18
Visualizing the action sequence ... 18
What-if scenarios .. 19

Manage Node Attributes, Cluster Options and Defaults with crm_attribute and attrd_updater 20
Other Commonly Used Tools .. 20

Controlling Command Line Output
Some of the pacemaker command line utilities have been converted to a new output system. Among these
tools are crm_mon and stonith_admin. This is an ongoing project, and more tools will be converted
over time. This system lets you control the formatting of output with --output-as= and the destination
of output with --output-to=.

The available formats vary by tool, but at least plain text, HTML, and XML are supported by all tools.
The default format is plain text. The default destination is stdout but can be redirected to any file. Some
formats support command line options for changing the style of the output. For instance:

crm_mon --help-output
Usage:
 crm_mon [OPTION?]

Provides a summary of cluster's current state.

Outputs varying levels of detail in a number of different formats.

Output Options:
 --output-as=FORMAT Specify output format as one of: console (default), html, text, xml
 --output-to=DEST Specify file name for output (or "-" for stdout)
 --html-cgi Add text needed to use output in a CGI program
 --html-stylesheet=URI Link to an external CSS stylesheet
 --html-title=TITLE Page title
 --text-fancy Use more highly formatted output

Monitor a Cluster with crm_mon

13

Using Pacemaker
Command-Line Tools

The crm_mon utility displays the current state of an active cluster. It can show the cluster status organized
by node or by resource, and can be used in either single-shot or dynamically updating mode. It can also
display operations performed and information about failures.

Using this tool, you can examine the state of the cluster for irregularities, and see how it responds when
you cause or simulate failures.

See the manual page or the output of crm_mon --help for a full description of its many options.

Example 5.1. Sample output from crm_mon -1

Cluster Summary:
 * Stack: corosync
 * Current DC: node2 (version 2.0.0-1) - partition with quorum
 * Last updated: Mon Jan 29 12:18:42 2018
 * Last change: Mon Jan 29 12:18:40 2018 by root via crm_attribute on node3
 * 5 nodes configured
 * 2 resources configured

Node List:
 * Online: [node1 node2 node3 node4 node5]

* Active resources:
 * Fencing (stonith:fence_xvm): Started node1
 * IP (ocf:heartbeat:IPaddr2): Started node2

Example 5.2. Sample output from crm_mon -n -1

Cluster Summary:
 * Stack: corosync
 * Current DC: node2 (version 2.0.0-1) - partition with quorum
 * Last updated: Mon Jan 29 12:21:48 2018
 * Last change: Mon Jan 29 12:18:40 2018 by root via crm_attribute on node3
 * 5 nodes configured
 * 2 resources configured

* Node List:
 * Node node1: online
 * Fencing (stonith:fence_xvm): Started
 * Node node2: online
 * IP (ocf:heartbeat:IPaddr2): Started
 * Node node3: online
 * Node node4: online
 * Node node5: online

As mentioned in an earlier section, the DC is the node is where decisions are made. The cluster elects a
node to be DC as needed. The only significance of the choice of DC to an administrator is the fact that its
logs will have the most information about why decisions were made.

Styling crm_mon output

14

Using Pacemaker
Command-Line Tools

Various parts of crm_mon's HTML output have a CSS class associated with them. Not everything does,
but some of the most interesting portions do. In the following example, the status of each node has an
"online" class and the details of each resource have an "rsc-ok" class.

<h2>Node List</h2>

Node: cluster01 online

ping (ocf::pacemaker:ping): Started

Node: cluster02 online

ping (ocf::pacemaker:ping): Started

By default, a stylesheet for styling these classes is included in the head of the HTML output. The relevant
portions of this stylesheet that would be used in the above example is:

<style>
.online { color: green }
.rsc-ok { color: green }
</style>

If you want to override some or all of the styling, simply create your own stylesheet, place it on a
web server, and pass --html-stylesheet=<URL> to crm_mon. The link is added after the default
stylesheet, so your changes take precedence. You don’t need to duplicate the entire default. Only include
what you want to change.

Edit the CIB XML with cibadmin

The most flexible tool for modifying the configuration is Pacemaker’s cibadmin command. With
cibadmin, you can query, add, remove, update or replace any part of the configuration. All changes take
effect immediately, so there is no need to perform a reload-like operation.

The simplest way of using cibadmin is to use it to save the current configuration to a temporary file,
edit that file with your favorite text or XML editor, and then upload the revised configuration.

Example 5.3. Safely using an editor to modify the cluster configuration

cibadmin --query > tmp.xml
vi tmp.xml
cibadmin --replace --xml-file tmp.xml

Some of the better XML editors can make use of a RELAX NG schema to help make sure any changes
you make are valid. The schema describing the configuration can be found in pacemaker.rng, which
may be deployed in a location such as /usr/share/pacemaker depending on your operating system
distribution and how you installed the software.

If you want to modify just one section of the configuration, you can query and replace just that section
to avoid modifying any others.

15

Using Pacemaker
Command-Line Tools

Example 5.4. Safely using an editor to modify only the resources section

cibadmin --query --scope resources > tmp.xml
vi tmp.xml
cibadmin --replace --scope resources --xml-file tmp.xml

To quickly delete a part of the configuration, identify the object you wish to delete by XML tag and id.
For example, you might search the CIB for all STONITH-related configuration:

Example 5.5. Searching for STONITH-related configuration items

cibadmin --query | grep stonith
 <nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="reboot"/>
 <nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="1"/>
 <primitive id="child_DoFencing" class="stonith" type="external/vmware">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:1" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:2" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:3" type="external/vmware" class="stonith">

If you wanted to delete the primitive tag with id child_DoFencing, you would run:

cibadmin --delete --xml-text '<primitive id="child_DoFencing"/>'

See the cibadmin man page for more options.

Important

Never edit the live cib.xml file directly. Pacemaker will detect such changes and refuse to use
the configuration.

Batch Configuration Changes with
crm_shadow

Often, it is desirable to preview the effects of a series of configuration changes before updating the live
configuration all at once. For this purpose, crm_shadow creates a "shadow" copy of the configuration
and arranges for all the command-line tools to use it.

To begin, simply invoke crm_shadow --create with a name of your choice, and follow the simple
on-screen instructions. Shadow copies are identified with a name to make it possible to have more than one.

Warning

Read this section and the on-screen instructions carefully; failure to do so could result in
destroying the cluster’s active configuration!

Example 5.6. Creating and displaying the active sandbox

crm_shadow --create test
Setting up shadow instance

16

Using Pacemaker
Command-Line Tools

Type Ctrl-D to exit the crm_shadow shell
shadow[test]:
shadow[test] # crm_shadow --which
test

From this point on, all cluster commands will automatically use the shadow copy instead of talking to the
cluster’s active configuration. Once you have finished experimenting, you can either make the changes
active via the --commit option, or discard them using the --delete option. Again, be sure to follow
the on-screen instructions carefully!

For a full list of crm_shadow options and commands, invoke it with the --help option.

Example 5.7. Use sandbox to make multiple changes all at once, discard them, and
verify real configuration is untouched

 shadow[test] # crm_failcount -r rsc_c001n01 -G
 scope=status name=fail-count-rsc_c001n01 value=0
 shadow[test] # crm_standby --node c001n02 -v on
 shadow[test] # crm_standby --node c001n02 -G
 scope=nodes name=standby value=on

 shadow[test] # cibadmin --erase --force
 shadow[test] # cibadmin --query
 <cib crm_feature_set="3.0.14" validate-with="pacemaker-3.0" epoch="112" num_updates="2" admin_epoch="0" cib-last-written="Mon Jan 8 23:26:47 2018" update-origin="rhel7-1" update-client="crm_node" update-user="root" have-quorum="1" dc-uuid="1">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
 </cib>
 shadow[test] # crm_shadow --delete test --force
 Now type Ctrl-D to exit the crm_shadow shell
 shadow[test] # exit
 # crm_shadow --which
 No active shadow configuration defined
 # cibadmin -Q
 <cib crm_feature_set="3.0.14" validate-with="pacemaker-3.0" epoch="110" num_updates="2" admin_epoch="0" cib-last-written="Mon Jan 8 23:26:47 2018" update-origin="rhel7-1" update-client="crm_node" update-user="root" have-quorum="1">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="cib-bootstrap-1" name="stonith-enabled" value="1"/>
 <nvpair id="cib-bootstrap-2" name="pe-input-series-max" value="30000"/>

See the next section, the section called “Simulate Cluster Activity with crm_simulate”, for how to test
your changes before committing them to the live cluster.

Simulate Cluster Activity with crm_simulate

The command-line tool crm_simulate shows the results of the same logic the cluster itself uses to
respond to a particular cluster configuration and status.

17

Using Pacemaker
Command-Line Tools

As always, the man page is the primary documentation, and should be consulted for further details. This
section aims for a better conceptual explanation and practical examples.

Replaying cluster decision-making logic
At any given time, one node in a Pacemaker cluster will be elected DC, and that node will run Pacemaker’s
scheduler to make decisions.

Each time decisions need to be made (a "transition"), the DC will have log messages like "Calculated
transition … saving inputs in …" with a file name. You can grab the named file and replay the cluster logic
to see why particular decisions were made. The file contains the live cluster configuration at that moment,
so you can also look at it directly to see the value of node attributes, etc., at that time.

The simplest usage is (replacing $FILENAME with the actual file name):

Example 5.8. Simulate cluster response to a given CIB

crm_simulate --simulate --xml-file $FILENAME

That will show the cluster state when the process started, the actions that need to be taken ("Transition
Summary"), and the resulting cluster state if the actions succeed. Most actions will have a brief description
of why they were required.

The transition inputs may be compressed. crm_simulate can handle these compressed files directly,
though if you want to edit the file, you’ll need to uncompress it first.

You can do the same simulation for the live cluster configuration at the current moment. This is useful
mainly when using crm_shadow to create a sandbox version of the CIB; the --live-check option
will use the shadow CIB if one is in effect.

Example 5.9. Simulate cluster response to current live CIB or shadow CIB

crm_simulate --simulate --live-check

Why decisions were made
To get further insight into the "why", it gets user-unfriendly very quickly. If you add the --show-
scores option, you will also see all the scores that went into the decision-making. The node with the
highest cumulative score for a resource will run it. You can look for -INFINITY scores in particular to
see where complete bans came into effect.

You can also add -VVVV to get more detailed messages about what’s happening under the hood. You
can add up to two more V’s even, but that’s usually useful only if you’re a masochist or tracing through
the source code.

Visualizing the action sequence
Another handy feature is the ability to generate a visual graph of the actions needed, using the --dot-
file option. This relies on the separate Graphviz 1 project.

Example 5.10. Generate a visual graph of cluster actions from a saved CIB

crm_simulate --simulate --xml-file $FILENAME --dot-file $FILENAME.dot

1 Graph visualization software. See http://www.graphviz.org/ for details.

18

http://www.graphviz.org/

Using Pacemaker
Command-Line Tools

dot $FILENAME.dot -Tsvg > $FILENAME.svg

$FILENAME.dot will contain a GraphViz representation of the cluster’s response to your changes,
including all actions with their ordering dependencies.

$FILENAME.svg will be the same information in a standard graphical format that you can view in your
browser or other app of choice. You could, of course, use other dot options to generate other formats.

How to interpret the graphical output:

• Bubbles indicate actions, and arrows indicate ordering dependencies

• Resource actions have text of the form resource_action_interval node indicating that the
specified action will be executed for the specified resource on the specified node, once if interval is 0
or at specified recurring milliseconds interval otherwise

• Actions with black text will be sent to the executor (that is, the appropriate agent will be invoked)

• Actions with orange text are "pseudo" actions that the cluster uses internally for ordering but require
no real activity

• Actions with a solid green border are part of the transition (that is, the cluster will attempt to execute
them in the given order — though a transition can be interrupted by action failure or new events)

• Dashed arrows indicate dependencies that are not present in the transition graph

• Actions with a dashed border will not be executed. If the dashed border is blue, the cluster does not feel
the action needs to be executed. If the dashed border is red, the cluster would like to execute the action
but cannot. Any actions depending on an action with a dashed border will not be able to execute.

• Loops should not happen, and should be reported as a bug if found.

Example 5.11. Small Cluster Transition

In the above example, it appears that a new node, pcmk-2, has come online and that the cluster is checking
to make sure rsc1, rsc2 and rsc3 are not already running there (indicated by the rscN_monitor_0 entries).
Once it did that, and assuming the resources were not active there, it would have liked to stop rsc1 and
rsc2 on pcmk-1 and move them to pcmk-2. However, there appears to be some problem and the cluster
cannot or is not permitted to perform the stop actions which implies it also cannot perform the start actions.
For some reason, the cluster does not want to start rsc3 anywhere.

Example 5.12. Complex Cluster Transition

What-if scenarios
You can make changes to the saved or shadow CIB and simulate it again, to see how Pacemaker would
react differently. You can edit the XML by hand, use command-line tools such as cibadmin with either
a shadow CIB or the CIB_file environment variable set to the filename, or use higher-level tool support
(see the man pages of the specific tool you’re using for how to perform actions on a saved CIB file rather
than the live CIB).

You can also inject node failures and/or action failures into the simulation; see the crm_simulate man
page for more details.

19

Using Pacemaker
Command-Line Tools

This capability is useful when using a shadow CIB to edit the configuration. Before committing the changes
to the live cluster with crm_shadow --commit, you can use crm_simulate to see how the cluster
will react to the changes.

Manage Node Attributes, Cluster Options and
Defaults with crm_attribute and attrd_updater

crm_attribute and attrd_updater are confusingly similar tools with subtle differences.

attrd_updater can query and update node attributes. crm_attribute can query and update not
only node attributes, but also cluster options, resource defaults, and operation defaults.

To understand the differences, it helps to understand the various types of node attribute.

Table 5.1. Types of Node Attributes

Type Recorded in
CIB?

Recorded
in attribute
manager
memory?

Survive
full cluster
restart?

Manageable
by
crm_attribute?

Manageable
by
attrd_updater?

permanent yes no yes yes no

transient yes yes no yes yes

private no yes no no yes

As you can see from the table above, crm_attribute can manage permanent and transient node
attributes, while attrd_updater can manage transient and private node attributes.

The difference between the two tools lies mainly in how they update node attributes: attrd_updater
always contacts the Pacemaker attribute manager directly, while crm_attribute will contact the
attribute manager only for transient node attributes, and will instead modify the CIB directly for permanent
node attributes (and for transient node attributes when unable to contact the attribute manager).

By contacting the attribute manager directly, attrd_updater can change an attribute’s
"dampening" (whether changes are immediately flushed to the CIB or after a specified amount of time,
to minimize disk writes for frequent changes), set private node attributes (which are never written to the
CIB), and set attributes for nodes that don’t yet exist.

By modifying the CIB directly, crm_attribute can set permanent node attributes (which are only in
the CIB and not managed by the attribute manager), and can be used with saved CIB files and shadow CIBs.

However a transient node attribute is set, it is synchronized between the CIB and the attribute manager,
on all nodes.

Other Commonly Used Tools
Other command-line tools include:

• crm_failcount: query or delete resource fail counts

• crm_node: manage cluster nodes

20

Using Pacemaker
Command-Line Tools

• crm_report: generate a detailed cluster report for bug submissions

• crm_resource: manage cluster resources

• crm_standby: manage standby status of nodes

• crm_verify: validate a CIB

• stonith_admin: manage fencing devices

See the manual pages for details.

21

Chapter 6. Troubleshooting Cluster
Problems

Table of Contents
Logging ... 22
Transitions ... 22
Further Information About Troubleshooting ... 23

Logging
Pacemaker by default logs messages of notice severity and higher to the system log, and messages of info
severity and higher to the detail log, which by default is /var/log/pacemaker/pacemaker.log.

Logging options can be controlled via environment variables at Pacemaker start-up. Where these
are set varies by operating system (often /etc/sysconfig/pacemaker or /etc/default/
pacemaker).

Because cluster problems are often highly complex, involving multiple machines, cluster daemons, and
managed services, Pacemaker logs rather verbosely to provide as much context as possible. It is an
ongoing priority to make these logs more user-friendly, but by necessity there is a lot of obscure, low-
level information that can make them difficult to follow.

The default log rotation configuration shipped with Pacemaker (typically installed in /etc/logrotate.d/
pacemaker) rotates the log when it reaches 100MB in size, or weekly, whichever comes first.

If you configure debug or (Heaven forbid) trace-level logging, the logs can grow enormous quite quickly.
Because rotated logs are by default named with the year, month, and day only, this can cause name
collisions if your logs exceed 100MB in a single day. You can add dateformat -%Y%m%d-%H to the
rotation configuration to avoid this.

Transitions
A key concept in understanding how a Pacemaker cluster functions is a transition. A transition is a set of
actions that need to be taken to bring the cluster from its current state to the desired state (as expressed
by the configuration).

Whenever a relevant event happens (a node joining or leaving the cluster, a resource failing, etc.), the
controller will ask the scheduler to recalculate the status of the cluster, which generates a new transition.
The controller then performs the actions in the transition in the proper order.

Each transition can be identified in the logs by a line like:

notice: Calculated transition 19, saving inputs in /var/lib/pacemaker/pengine/pe-input-1463.bz2

The file listed as the "inputs" is a snapshot of the cluster configuration and state at that moment (the CIB).
This file can help determine why particular actions were scheduled. The crm_simulate command,
described in the section called “Simulate Cluster Activity with crm_simulate”, can be used to replay the
file.

22

Troubleshooting Cluster Problems

Further Information About Troubleshooting
Andrew Beekhof wrote a series of articles about troubleshooting in his blog, The Cluster Guy [http://
blog.clusterlabs.org/]:

• Debugging Pacemaker [http://blog.clusterlabs.org/blog/2013/debugging-pacemaker]

• Debugging the Policy Engine [http://blog.clusterlabs.org/blog/2013/debugging-pengine]

• Pacemaker Logging [http://blog.clusterlabs.org/blog/2013/pacemaker-logging]

The articles were written for an earlier version of Pacemaker, so many of the specific names and log
messages to look for have changed, but the concepts are still valid.

23

http://blog.clusterlabs.org/
http://blog.clusterlabs.org/
http://blog.clusterlabs.org/
http://blog.clusterlabs.org/blog/2013/debugging-pacemaker
http://blog.clusterlabs.org/blog/2013/debugging-pacemaker
http://blog.clusterlabs.org/blog/2013/debugging-pengine
http://blog.clusterlabs.org/blog/2013/debugging-pengine
http://blog.clusterlabs.org/blog/2013/pacemaker-logging
http://blog.clusterlabs.org/blog/2013/pacemaker-logging

Chapter 7. Upgrading a Pacemaker
Cluster

Table of Contents
Pacemaker Versioning .. 24
Upgrading Cluster Software .. 25

Complete Cluster Shutdown .. 25
Rolling (node by node) .. 26
Detach and Reattach .. 27

Upgrading the Configuration ... 27
What Changed in 2.0 ... 29
What Changed in 1.0 ... 30

New .. 30
Changed .. 30
Removed ... 31

Pacemaker Versioning
Pacemaker has an overall release version, plus separate version numbers for certain internal components.

• Pacemaker release version: This version consists of three numbers (x.y.z).

The major version number (the x in x.y.z) increases when at least some rolling upgrades are not possible
from the previous major version. For example, a rolling upgrade from 1.0.8 to 1.1.15 should always be
supported, but a rolling upgrade from 1.0.8 to 2.0.0 may not be possible.

The minor version (the y in x.y.z) increases when there are significant changes in cluster default behavior,
tool behavior, and/or the API interface (for software that utilizes Pacemaker libraries). The main benefit
is to alert you to pay closer attention to the release notes, to see if you might be affected.

The release counter (the z in x.y.z) is increased with all public releases of Pacemaker, which typically
include both bug fixes and new features.

• CRM feature set: This version number applies to the communication between full cluster nodes, and
is used to avoid problems in mixed-version clusters.

The major version number increases when nodes with different versions would not work (rolling
upgrades are not allowed). The minor version number increases when mixed-version clusters are
allowed only during rolling upgrades. The minor-minor version number is ignored, but allows resource
agents to detect cluster support for various features. 1

Pacemaker ensures that the longest-running node is the cluster’s DC. This ensures new features are not
enabled until all nodes are upgraded to support them.

• Pacemaker Remote protocol version: This version applies to communication between a Pacemaker
Remote node and the cluster. It increases when an older cluster node would have problems hosting the
connection to a newer Pacemaker Remote node. To avoid these problems, Pacemaker Remote nodes will
accept connections only from cluster nodes with the same or newer Pacemaker Remote protocol version.

1 Before CRM feature set 3.1.0 (Pacemaker 2.0.0), the minor-minor version number was treated the same as the minor version.

24

Upgrading a Pacemaker Cluster

Unlike with CRM feature set differences between full cluster nodes, mixed Pacemaker Remote protocol
versions between Pacemaker Remote nodes and full cluster nodes are fine, as long as the Pacemaker
Remote nodes have the older version. This can be useful, for example, to host a legacy application in
an older operating system version used as a Pacemaker Remote node.

• XML schema version: Pacemaker’s configuration syntax — what’s allowed in the Configuration
Information Base (CIB) — has its own version. This allows the configuration syntax to evolve over time
while still allowing clusters with older configurations to work without change.

Upgrading Cluster Software
There are three approaches to upgrading a cluster, each with advantages and disadvantages.

Table 7.1. Upgrade Methods

Method Available
between all
versions

Can be
used with
Pacemaker
Remote
nodes

Service
outage
during
upgrade

Service
recovery
during
upgrade

Exercises
failover
logic

Allows
change of
messaging
layer a

Complete
cluster
shutdown

yes yes always N/A no yes

Rolling
(node by
node)

no yes always b yes yes no

Detach and
reattach

yes no only due to
failure

no no yes

a Currently, Corosync version 2 and greater is the only supported cluster stack, but other stacks have been supported by past versions,
and may be supported by future versions.
b Any active resources will be moved off the node being upgraded, so there will be at least a brief outage unless all resources can
be migrated "live".

Complete Cluster Shutdown
In this scenario, one shuts down all cluster nodes and resources, then upgrades all the nodes before
restarting the cluster.

1. On each node:

a. Shutdown the cluster software (pacemaker and the messaging layer).

b. Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/or the
underlying operating system.

c. Check the configuration with the crm_verify tool.

2. On each node:

a. Start the cluster software. Currently, only Corosync version 2 and greater is supported as the cluster
layer, but if another stack is supported in the future, the stack does not need to be the same one
before the upgrade.

25

Upgrading a Pacemaker Cluster

One variation of this approach is to build a new cluster on new hosts. This allows the new version to be
tested beforehand, and minimizes downtime by having the new nodes ready to be placed in production as
soon as the old nodes are shut down.

Rolling (node by node)
In this scenario, each node is removed from the cluster, upgraded, and then brought back online, until all
nodes are running the newest version.

Special considerations when planning a rolling upgrade:

• If you plan to upgrade other cluster software — such as the messaging layer — at the same time, consult
that software’s documentation for its compatibility with a rolling upgrade.

• If the major version number is changing in the Pacemaker version you are upgrading to, a rolling upgrade
may not be possible. Read the new version’s release notes (as well the information here) for what
limitations may exist.

• If the CRM feature set is changing in the Pacemaker version you are upgrading to, you should run a
mixed-version cluster only during a small rolling upgrade window. If one of the older nodes drops out
of the cluster for any reason, it will not be able to rejoin until it is upgraded.

• If the Pacemaker Remote protocol version is changing, all cluster nodes should be upgraded before
upgrading any Pacemaker Remote nodes.

See the ClusterLabs wiki’s Release Calendar [http://clusterlabs.org/wiki/ReleaseCalendar] to figure out
whether the CRM feature set and/or Pacemaker Remote protocol version changed between the the
Pacemaker release versions in your rolling upgrade.

To perform a rolling upgrade, on each node in turn:

1. Put the node into standby mode, and wait for any active resources to be moved cleanly to another node.
(This step is optional, but allows you to deal with any resource issues before the upgrade.)

2. Shutdown the cluster software (pacemaker and the messaging layer) on the node.

3. Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/or the
underlying operating system.

4. If this is the first node to be upgraded, check the configuration with the crm_verify tool.

5. Start the messaging layer. This must be the same messaging layer (currently only Corosync version 2
and greater is supported) that the rest of the cluster is using.

Note

Even if a rolling upgrade from the current version of the cluster to the newest version is not
directly possible, it may be possible to perform a rolling upgrade in multiple steps, by upgrading
to an intermediate version first.

Table 7.2. Version Compatibility Table

Version being Installed Oldest Compatible Version

Pacemaker 2.y.z Pacemaker 1.1.11 a

Pacemaker 1.y.z Pacemaker 1.0.0

26

http://clusterlabs.org/wiki/ReleaseCalendar
http://clusterlabs.org/wiki/ReleaseCalendar

Upgrading a Pacemaker Cluster

Version being Installed Oldest Compatible Version

Pacemaker 0.7.z Pacemaker 0.6.z
a Rolling upgrades from Pacemaker 1.1.z to 2.y.z are possible only if the cluster uses corosync version 2 or greater as its
messaging layer, and the Cluster Information Base (CIB) uses schema 1.0 or higher in its validate-with property.

Detach and Reattach
The reattach method is a variant of a complete cluster shutdown, where the resources are left active and
get re-detected when the cluster is restarted.

This method may not be used if the cluster contains any Pacemaker Remote nodes.

1. Tell the cluster to stop managing services. This is required to allow the services to remain active after
the cluster shuts down.

crm_attribute --name maintenance-mode --update true

2. On each node, shutdown the cluster software (pacemaker and the messaging layer), and upgrade the
Pacemaker software. This may also include upgrading the messaging layer. While the underlying
operating system may be upgraded at the same time, that will be more likely to cause outages in the
detached services (certainly, if a reboot is required).

3. Check the configuration with the crm_verify tool.

4. On each node, start the cluster software. Currently, only Corosync version 2 and greater is supported
as the cluster layer, but if another stack is supported in the future, the stack does not need to be the
same one before the upgrade.

5. Verify that the cluster re-detected all resources correctly.

6. Allow the cluster to resume managing resources again:

crm_attribute --name maintenance-mode --delete

Note

While the goal of the detach-and-reattach method is to avoid disturbing running services,
resources may still move after the upgrade if any resource’s location is governed by a rule based
on transient node attributes. Transient node attributes are erased when the node leaves the cluster.
A common example is using the ocf:pacemaker:ping resource to set a node attribute used to
locate other resources.

Upgrading the Configuration

The CIB schema version can change from one Pacemaker version to another.

After cluster software is upgraded, the cluster will continue to use the older schema version that it was
previously using. This can be useful, for example, when administrators have written tools that modify the
configuration, and are based on the older syntax. 2

2 As of Pacemaker 2.0.0, only schema versions pacemaker-1.0 and higher are supported (excluding pacemaker-1.1, which was an experimental
schema now known as pacemaker-next).

27

Upgrading a Pacemaker Cluster

However, when using an older syntax, new features may be unavailable, and there is a performance impact,
since the cluster must do a non-persistent configuration upgrade before each transition. So while using the
old syntax is possible, it is not advisable to continue using it indefinitely.

Even if you wish to continue using the old syntax, it is a good idea to follow the upgrade procedure
outlined below, except for the last step, to ensure that the new software has no problems with your existing
configuration (since it will perform much the same task internally).

If you are brave, it is sufficient simply to run cibadmin --upgrade.

A more cautious approach would proceed like this:

1. Create a shadow copy of the configuration. The later commands will automatically operate on this copy,
rather than the live configuration.

crm_shadow --create shadow

2. Verify the configuration is valid with the new software (which may be stricter about syntax mistakes,
or may have dropped support for deprecated features):

crm_verify --live-check

3. Fix any errors or warnings.

4. Perform the upgrade:

cibadmin --upgrade

5. If this step fails, there are three main possibilities:

a. The configuration was not valid to start with (did you do steps 2 and 3?).

b. The transformation failed - report a bug [http://bugs.clusterlabs.org/] or email the project
[mailto:users@clusterlabs.org?subject=Transformation%20failed%20during%20upgrade].

c. The transformation was successful but produced an invalid result.

If the result of the transformation is invalid, you may see a number of errors from the validation
library. If these are not helpful, visit the Validation FAQ wiki page [http://clusterlabs.org/wiki/
Validation_FAQ] and/or try the manual upgrade procedure described below.

6. Check the changes:

crm_shadow --diff

If at this point there is anything about the upgrade that you wish to fine-tune (for example, to change
some of the automatic IDs), now is the time to do so:

crm_shadow --edit

This will open the configuration in your favorite editor (whichever is specified by the standard
$EDITOR environment variable).

7. Preview how the cluster will react:

crm_simulate --live-check --save-dotfile shadow.dot -S
dot -Tsvg shadow.dot -o shadow.svg

28

http://bugs.clusterlabs.org/
http://bugs.clusterlabs.org/
mailto:users@clusterlabs.org?subject=Transformation%20failed%20during%20upgrade
mailto:users@clusterlabs.org?subject=Transformation%20failed%20during%20upgrade
http://clusterlabs.org/wiki/Validation_FAQ
http://clusterlabs.org/wiki/Validation_FAQ
http://clusterlabs.org/wiki/Validation_FAQ

Upgrading a Pacemaker Cluster

You can then view shadow.svg with any compatible image viewer or web browser. Verify that either
no resource actions will occur or that you are happy with any that are scheduled. If the output contains
actions you do not expect (possibly due to changes to the score calculations), you may need to make
further manual changes. See the section called “Simulate Cluster Activity with crm_simulate” for
further details on how to interpret the output of crm_simulate and dot.

8. Upload the changes:

crm_shadow --commit shadow --force

In the unlikely event this step fails, please report a bug.

Note

 It is also possible to perform the configuration upgrade steps manually:

1. Locate the upgrade*.xsl conversion scripts provided with the source code. These will
often be installed in a location such as /usr/share/pacemaker, or may be obtained from
the source repository [https://github.com/ClusterLabs/pacemaker/tree/master/xml].

2. Run the conversion scripts that apply to your older version, for example:

xsltproc /path/to/upgrade06.xsl config06.xml > config10.xml

3. Locate the pacemaker.rng script (from the same location as the xsl files).

4. Check the XML validity:

xmllint --relaxng /path/to/pacemaker.rng config10.xml

The advantage of this method is that it can be performed without the cluster running, and any
validation errors are often more informative.

What Changed in 2.0
The main goal of the 2.0 release was to remove support for deprecated syntax, along with some small
changes in default configuration behavior and tool behavior. Highlights:

• Only Corosync version 2 and greater is now supported as the underlying cluster layer. Support for
Heartbeat and Corosync 1 (including CMAN) is removed.

• The Pacemaker detail log file is now stored in /var/log/pacemaker/pacemaker.log by default.

• The record-pending cluster property now defaults to true, which allows status tools such as crm_mon
to show operations that are in progress.

• Support for a number of deprecated build options, environment variables, and configuration settings
has been removed.

• The master tag has been deprecated in favor of using a clone tag with the new promotable
meta-attribute set to true. "Master/slave" clone resources are now referred to as "promotable" clone
resources, though it will take longer for the full terminology change to be completed.

• The public API for Pacemaker libraries that software applications can use has changed significantly.

29

https://github.com/ClusterLabs/pacemaker/tree/master/xml
https://github.com/ClusterLabs/pacemaker/tree/master/xml

Upgrading a Pacemaker Cluster

For a detailed list of changes, see the release notes and the Pacemaker 2.0 Changes [https://
wiki.clusterlabs.org/wiki/Pacemaker_2.0_Changes] page on the ClusterLabs wiki.

What Changed in 1.0

New
• Failure timeouts.

• New section for resource and operation defaults.

• Tool for making offline configuration changes.

• Rules, instance_attributes, meta_attributes and sets of operations can be defined
once and referenced in multiple places.

• The CIB now accepts XPath-based create/modify/delete operations. See the cibadmin help text.

• Multi-dimensional colocation and ordering constraints.

• The ability to connect to the CIB from non-cluster machines.

• Allow recurring actions to be triggered at known times.

Changed
• Syntax

• All resource and cluster options now use dashes (-) instead of underscores (_)

• master_slave was renamed to master

• The attributes container tag was removed

• The operation field pre-req has been renamed requires

• All operations must have an interval, start/stop must have it set to zero

• The stonith-enabled option now defaults to true.

• The cluster will refuse to start resources if stonith-enabled is true (or unset) and no STONITH
resources have been defined

• The attributes of colocation and ordering constraints were renamed for clarity.

• resource-failure-stickiness has been replaced by migration-threshold.

• The parameters for command-line tools have been made consistent

• Switched to RelaxNG schema validation and libxml2 parser

• id fields are now XML IDs which have the following limitations:

• id’s cannot contain colons (:)

• id’s cannot begin with a number

30

https://wiki.clusterlabs.org/wiki/Pacemaker_2.0_Changes
https://wiki.clusterlabs.org/wiki/Pacemaker_2.0_Changes
https://wiki.clusterlabs.org/wiki/Pacemaker_2.0_Changes

Upgrading a Pacemaker Cluster

• id’s must be globally unique (not just unique for that tag)

• Some fields (such as those in constraints that refer to resources) are IDREFs.

This means that they must reference existing resources or objects in order for the configuration to be
valid. Removing an object which is referenced elsewhere will therefore fail.

• The CIB representation, from which a MD5 digest is calculated to verify CIBs on the nodes, has
changed.

This means that every CIB update will require a full refresh on any upgraded nodes until the cluster
is fully upgraded to 1.0. This will result in significant performance degradation and it is therefore
highly inadvisable to run a mixed 1.0/0.6 cluster for any longer than absolutely necessary.

• Ping node information no longer needs to be added to ha.cf.

Simply include the lists of hosts in your ping resource(s).

Removed
• Syntax

• It is no longer possible to set resource meta options as top-level attributes. Use meta attributes instead.

• Resource and operation defaults are no longer read from crm_config.

31

Chapter 8. Resource Agents

Table of Contents
Resource Agent Actions ... 32
OCF Resource Agents .. 32

Location of Custom Scripts ... 32
Actions .. 32
How are OCF Return Codes Interpreted? .. 33
OCF Return Codes .. 34

LSB Resource Agents (Init Scripts) .. 35
LSB Compliance ... 35

Resource Agent Actions
If one resource depends on another resource via constraints, the cluster will interpret an expected result
as sufficient to continue with dependent actions. This may cause timing issues if the resource agent start
returns before the service is not only launched but fully ready to perform its function, or if the resource
agent stop returns before the service has fully released all its claims on system resources. At a minimum,
the start or stop should not return before a status command would return the expected (started or stopped)
result.

OCF Resource Agents

Location of Custom Scripts
 OCF Resource Agents are found in /usr/lib/ocf/resource.d/provider

When creating your own agents, you are encouraged to create a new directory under /usr/lib/ocf/
resource.d/ so that they are not confused with (or overwritten by) the agents shipped by existing
providers.

So, for example, if you choose the provider name of bigCorp and want a new resource named bigApp, you
would create a resource agent called /usr/lib/ocf/resource.d/bigCorp/bigApp and define
a resource:

<primitive id="custom-app" class="ocf" provider="bigCorp" type="bigApp"/>

Actions
All OCF resource agents are required to implement the following actions.

Table 8.1. Required Actions for OCF Agents

Action Description Instructions

start Start the resource Return 0 on success and an appropriate error
code otherwise. Must not report success until the
resource is fully active.

32

Resource Agents

Action Description Instructions

stop Stop the resource Return 0 on success and an appropriate error
code otherwise. Must not report success until the
resource is fully stopped.

monitor Check the resource’s
state

Exit 0 if the resource is running, 7 if it is stopped,
and anything else if it is failed.

NOTE: The monitor script should test the state of
the resource on the local machine only.

meta-data Describe the resource Provide information about this resource as an XML
snippet. Exit with 0.

NOTE: This is not performed as root.

validate-all Verify the supplied
parameters

Return 0 if parameters are valid, 2 if not valid, and 6
if resource is not configured.

Additional requirements (not part of the OCF specification) are placed on agents that will be used for
advanced concepts such as clone resources.

Table 8.2. Optional Actions for OCF Resource Agents

Action Description Instructions

promote Promote the local instance of a promotable clone
resource to the master (primary) state.

Return 0 on success

demote Demote the local instance of a promotable clone
resource to the slave (secondary) state.

Return 0 on success

notify Used by the cluster to send the agent pre- and post-
notification events telling the resource what has
happened and will happen.

Must not fail. Must exit
with 0

One action specified in the OCF specs, recover, is not currently used by the cluster. It is intended to be
a variant of the start action that tries to recover a resource locally.

Important

If you create a new OCF resource agent, use ocf-tester to verify that the agent complies
with the OCF standard properly.

How are OCF Return Codes Interpreted?
The first thing the cluster does is to check the return code against the expected result. If the result does not
match the expected value, then the operation is considered to have failed, and recovery action is initiated.

There are three types of failure recovery:

Table 8.3. Types of recovery performed by the cluster

Type Description Action Taken by the Cluster

soft A transient error occurred Restart the resource or move it to a new
location

33

Resource Agents

Type Description Action Taken by the Cluster

hard A non-transient error that may be specific
to the current node occurred

Move the resource elsewhere and prevent
it from being retried on the current node

fatal A non-transient error that will be
common to all cluster nodes (e.g. a bad
configuration was specified)

Stop the resource and prevent it from
being started on any cluster node

OCF Return Codes
The following table outlines the different OCF return codes and the type of recovery the cluster will
initiate when a failure code is received. Although counterintuitive, even actions that return 0 (aka.
OCF_SUCCESS) can be considered to have failed, if 0 was not the expected return value.

Table 8.4. OCF Return Codes and their Recovery Types

RC OCF Alias Description RT

0 OCF_SUCCESS Success. The command completed successfully.
This is the expected result for all start, stop,
promote and demote commands.

soft

1 OCF_ERR_GENERIC Generic "there was a problem" error code. soft

2 OCF_ERR_ARGS The resource’s configuration is not valid on this
machine. E.g. it refers to a location not found on
the node.

hard

3 OCF_ERR_UNIMPLEMENTED The requested action is not implemented. hard

4 OCF_ERR_PERM The resource agent does not have sufficient
privileges to complete the task.

hard

5 OCF_ERR_INSTALLED The tools required by the resource are not
installed on this machine.

hard

6 OCF_ERR_CONFIGURED The resource’s configuration is invalid. E.g.
required parameters are missing.

fatal

7 OCF_NOT_RUNNING The resource is safely stopped. The cluster will
not attempt to stop a resource that returns this
for any action.

N/A

8 OCF_RUNNING_MASTER The resource is running in master mode. soft

9 OCF_FAILED_MASTER The resource is in master mode but has failed.
The resource will be demoted, stopped and then
started (and possibly promoted) again.

soft

other N/A Custom error code. soft

Exceptions to the recovery handling described above:

• Probes (non-recurring monitor actions) that find a resource active (or in master mode) will not result in
recovery action unless it is also found active elsewhere.

• The recovery action taken when a resource is found active more than once is determined by the
resource’s multiple-active property.

• Recurring actions that return OCF_ERR_UNIMPLEMENTED do not cause any type of recovery.

34

Resource Agents

LSB Resource Agents (Init Scripts)

LSB Compliance
The relevant part of the LSB specifications [http://refspecs.linuxfoundation.org/lsb.shtml] includes a
description of all the return codes listed here.

Assuming some_service is configured correctly and currently inactive, the following sequence will
help you determine if it is LSB-compatible:

1. Start (stopped):

/etc/init.d/some_service start ; echo "result: $?"

a. Did the service start?

b. Did the echo command print result: 0 (in addition to the init script’s usual output)?

2. Status (running):

/etc/init.d/some_service status ; echo "result: $?"

a. Did the script accept the command?

b. Did the script indicate the service was running?

c. Did the echo command print result: 0 (in addition to the init script’s usual output)?

3. Start (running):

/etc/init.d/some_service start ; echo "result: $?"

a. Is the service still running?

b. Did the echo command print result: 0 (in addition to the init script’s usual output)?

4. Stop (running):

/etc/init.d/some_service stop ; echo "result: $?"

a. Was the service stopped?

b. Did the echo command print result: 0 (in addition to the init script’s usual output)?

5. Status (stopped):

/etc/init.d/some_service status ; echo "result: $?"

a. Did the script accept the command?

b. Did the script indicate the service was not running?

c. Did the echo command print result: 3 (in addition to the init script’s usual output)?

6. Stop (stopped):

/etc/init.d/some_service stop ; echo "result: $?"

35

http://refspecs.linuxfoundation.org/lsb.shtml
http://refspecs.linuxfoundation.org/lsb.shtml

Resource Agents

a. Is the service still stopped?

b. Did the echo command print result: 0 (in addition to the init script’s usual output)?

7. Status (failed):

a. This step is not readily testable and relies on manual inspection of the script.

The script can use one of the error codes (other than 3) listed in the LSB spec to indicate that it is
active but failed. This tells the cluster that before moving the resource to another node, it needs to
stop it on the existing one first.

If the answer to any of the above questions is no, then the script is not LSB-compliant. Your options are
then to either fix the script or write an OCF agent based on the existing script.

36

Appendix A. Revision History
Revision History
Revision 1-0 Tue Jan 23 2018 AndrewBeekhof<andrew@beekhof.net>,

KenGaillot<kgaillot@redhat.com>
Move administration-oriented information from Pacemaker Explained into its own book
Revision 1-1 Mon Jan 28 2019 KenGaillot<kgaillot@redhat.com>,

JanPokorný<jpokorny@redhat.com>
Add "Troubleshooting" chapter, minor clarifications and reformatting
Revision 1-2 Mon May 13 2019 KenGaillot<kgaillot@redhat.com>
Overhaul configuration how-to
Revision 1-3 Tue Oct 15 2019 KenGaillot<kgaillot@redhat.com>
Add Tools chapter
Revision 2-0 Tue Nov 5 2019 ChrisLumens<clumens@redhat.com>
Update for crm_mon changes in 2.0.3
Revision 2-1 Sun Dec 22 2019 FerencWagner<wferi@debian.org>
Update log example to how it would look with current changes

37

Index
Symbols
0

OCF_SUCCESS, 34
1

OCF_ERR_GENERIC, 34
2

OCF_ERR_ARGS, 34
3

OCF_ERR_UNIMPLEMENTED, 34
4

OCF_ERR_PERM, 34
5

OCF_ERR_INSTALLED, 34
6

OCF_ERR_CONFIGURED, 34
7

OCF_NOT_RUNNING, 34
8

OCF_RUNNING_MASTER, 34
9

OCF_FAILED_MASTER, 34

A
Action

demote, 33
meta-data, 33
monitor, 33
notify, 33
promote, 33
start, 32
stop, 33
validate-all, 33

Add Cluster Node, 7
Corosync, 7

attrd_updater, 20

C
Changing cluster stack, 25
cibadmin, 15
CIB_encrypted, 11
CIB_passwd, 11
CIB_port, 11
CIB_server, 11
CIB_user, 11
Cluster

Querying Options, 10
Remote administration, 11
Remote connection, 11
Setting Options, 10
switching between stacks, 25

Cluster Option, 10, 10
Command-line tool

attrd_updater, 20
cibadmin, 15
crm_attribute, 20
crm_failcount, 20
crm_mon, 13

css, 14
crm_node, 20
crm_report, 20
crm_shadow, 16
crm_simulate, 17
crm_standby, 20
crm_verify, 20
stonith_admin, 20

Configuration, 27, 28
upgrade manually, 29
upgrading, 27
validate XML, 29
verify, 28

convert, 29
Corosync, 7, 7, 8

Add Cluster Node, 7
Remove Cluster Node, 7
Replace Cluster Node, 8

crm_attribute, 20
crm_failcount, 20
crm_mon, 13

css, 14
crm_node, 20
crm_report, 20
crm_shadow, 16
crm_simulate, 17
crm_standby, 20
crm_verify, 20
css, 14

D
demote, 33

OCF Action, 33

E
Environment Variable

CIB_encrypted, 11
CIB_passwd, 11
CIB_port, 11
CIB_server, 11
CIB_user, 11

error
fatal, 34
hard, 34
soft, 33

38

Index

F
fatal, 34

OCF error, 34
feedback

contact information for this manual, x

H
hard, 34

OCF error, 34

M
meta-data, 33

OCF Action, 33
monitor, 33

OCF Action, 33

N
notify, 33

OCF Action, 33

O
OCF

Action
demote, 33
meta-data, 33
monitor, 33
notify, 33
promote, 33
start, 32
stop, 33
validate-all, 33

error
fatal, 34
hard, 34
soft, 33

OCF Action, 32, 33, 33, 33, 33, 33, 33, 33
OCF error, 33, 34, 34
OCF Resource Agents, 32
ocf-tester, 33
OCF_ERR_ARGS, 34, 34
OCF_ERR_CONFIGURED, 34, 34
OCF_ERR_GENERIC, 34, 34
OCF_ERR_INSTALLED, 34, 34
OCF_ERR_PERM, 34, 34
OCF_ERR_UNIMPLEMENTED, 34, 34
OCF_FAILED_MASTER, 34, 34
OCF_NOT_RUNNING, 34, 34
OCF_RUNNING_MASTER, 34, 34
OCF_SUCCESS, 34, 34
Option

remote-clear-port, 12
remote-tls-port, 12

other, 34

P
promote, 33

OCF Action, 33

Q
Querying

Cluster Option, 10
Querying Options, 10

R
reattach, 25
reattach upgrade, 25
Remote administration, 11
Remote connection, 11
Remote Connection

Option
remote-clear-port, 12
remote-tls-port, 12

Remote Connection Option, 12, 12
remote-clear-port, 12

Remote Connection Option, 12
remote-tls-port, 12

Remote Connection Option, 12
Remove Cluster Node, 7

Corosync, 7
Replace Cluster Node, 8

Corosync, 8
Return Code

0
OCF_SUCCESS, 34

1
OCF_ERR_GENERIC, 34

2
OCF_ERR_ARGS, 34

3
OCF_ERR_UNIMPLEMENTED, 34

4
OCF_ERR_PERM, 34

5
OCF_ERR_INSTALLED, 34

6
OCF_ERR_CONFIGURED, 34

7
OCF_NOT_RUNNING, 34

8
OCF_RUNNING_MASTER, 34

9
OCF_FAILED_MASTER, 34

OCF_ERR_ARGS, 34
OCF_ERR_CONFIGURED, 34
OCF_ERR_GENERIC, 34

39

Index

OCF_ERR_INSTALLED, 34
OCF_ERR_PERM, 34
OCF_ERR_UNIMPLEMENTED, 34
OCF_FAILED_MASTER, 34
OCF_NOT_RUNNING, 34
OCF_RUNNING_MASTER, 34
OCF_SUCCESS, 34
other, 34

rolling, 25
rolling upgrade, 25

S
Setting

Cluster Option, 10
Setting Options, 10
shutdown, 25
shutdown upgrade, 25
soft, 33

OCF error, 33
start, 32

OCF Action, 32
stonith_admin, 20
stop, 33

OCF Action, 33
switching between stacks, 25

U
upgrade

Configuration, 27
reattach, 25
rolling, 25
shutdown, 25

upgrade manually, 29
upgrading, 27

V
validate configuration, 29
validate XML, 29
validate-all, 33

OCF Action, 33
verify, 28

Configuration, 28

X
XML

convert, 29

40

	Pacemaker Administration
	Table of Contents
	Preface
	Document Conventions
	Typographic Conventions
	Pull-quote Conventions
	Notes and Warnings

	We Need Feedback!

	Chapter 1. Read-Me-First
	The Scope of this Document
	What Is Pacemaker?
	Cluster Architecture
	Pacemaker Architecture
	Node Redundancy Designs

	Chapter 2. Installing Cluster Software
	Installing the Software
	Enabling Pacemaker
	Enabling Pacemaker For Corosync version 2 and greater

	Chapter 3. The Cluster Layer
	Pacemaker and the Cluster Layer
	Managing Nodes in a Corosync-Based Cluster
	Adding a New Corosync Node
	Removing a Corosync Node
	Replacing a Corosync Node

	Chapter 4. Configuring Pacemaker
	Configuration Using Higher-level Tools
	Configuration Using Pacemaker’s Command-Line Tools
	Working with CIB Properties
	Querying and Setting Cluster Options
	When Options are Listed More Than Once

	Connecting from a Remote Machine

	Chapter 5. Using Pacemaker Command-Line Tools
	Controlling Command Line Output
	Monitor a Cluster with crm_mon
	Styling crm_mon output

	Edit the CIB XML with cibadmin
	Batch Configuration Changes with crm_shadow
	Simulate Cluster Activity with crm_simulate
	Replaying cluster decision-making logic
	Why decisions were made
	Visualizing the action sequence
	What-if scenarios

	Manage Node Attributes, Cluster Options and Defaults with crm_attribute and attrd_updater
	Other Commonly Used Tools

	Chapter 6. Troubleshooting Cluster Problems
	Logging
	Transitions
	Further Information About Troubleshooting

	Chapter 7. Upgrading a Pacemaker Cluster
	Pacemaker Versioning
	Upgrading Cluster Software
	Complete Cluster Shutdown
	Rolling (node by node)
	Detach and Reattach

	Upgrading the Configuration
	What Changed in 2.0
	What Changed in 1.0
	New
	Changed
	Removed

	Chapter 8. Resource Agents
	Resource Agent Actions
	OCF Resource Agents
	Location of Custom Scripts
	Actions
	How are OCF Return Codes Interpreted?
	OCF Return Codes

	LSB Resource Agents (Init Scripts)
	LSB Compliance

	Appendix A. Revision History
	Index

