Pacemaker Administration

Managing Pacemaker Clusters

Edition 2

		[image:]

	

Written by the Pacemaker project contributors

Legal Notice

		Copyright © 2009-2019 The Pacemaker project contributors.
	

		The text of and illustrations in this document are licensed under version 4.0 or later of the Creative Commons Attribution-ShareAlike International Public License ("CC-BY-SA")
 [1].
	

		In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
	

		In addition to the requirements of this license, the following activities are looked upon favorably:
			
					If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the authors of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors time to provide updated documents. This notification should describe modifications, if any, made to the document.
				

	
					All substantive modifications (including deletions) be either clearly marked up in the document or else described in an attachment to the document.
				

	
					Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any hardcopy or CD-ROM expression of the author(s) work.
				

	

Abstract

			This document has instructions and tips for system administrators who need to manage high-availability clusters using Pacemaker.
		

 Preface

 1. Document Conventions

		This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of information.
	

 1.1. Typographic Conventions

			Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the circumstances they apply to, are as follows.
		

			Mono-spaced Bold
		

			Used to highlight system input, including shell commands, file names and paths. Also used to highlight keys and key combinations. For example:
		

				To see the contents of the file my_next_bestselling_novel in your current working directory, enter the cat my_next_bestselling_novel command at the shell prompt and press Enter to execute the command.
			

			The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all distinguishable thanks to context.
		

			Key combinations can be distinguished from an individual key by the plus sign that connects each part of a key combination. For example:
		

				Press Enter to execute the command.
			

				Press Ctrl+Alt+F2 to switch to a virtual terminal.
			

			The first example highlights a particular key to press. The second example highlights a key combination: a set of three keys pressed simultaneously.
		

			If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:
		

				File-related classes include filesystem for file systems, file for files, and dir for directories. Each class has its own associated set of permissions.
			

			Proportional Bold
		

			This denotes words or phrases encountered on a system, including application names; dialog-box text; labeled buttons; check-box and radio-button labels; menu titles and submenu titles. For example:
		

				Choose System → Preferences → Mouse from the main menu bar to launch Mouse Preferences. In the Buttons tab, select the Left-handed mouse check box and click Close to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).
			

				To insert a special character into a gedit file, choose Applications → Accessories → Character Map from the main menu bar. Next, choose Search → Find… from the Character Map menu bar, type the name of the character in the Search field and click Next. The character you sought will be highlighted in the Character Table. Double-click this highlighted character to place it in the Text to copy field and then click the Copy button. Now switch back to your document and choose Edit → Paste from the gedit menu bar.
			

			The above text includes application names; system-wide menu names and items; application-specific menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all distinguishable by context.
		

			Mono-spaced Bold Italic or Proportional Bold Italic
		

			Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance. For example:
		

				To connect to a remote machine using ssh, type ssh username@domain.name at a shell prompt. If the remote machine is example.com and your username on that machine is john, type ssh john@example.com.
			

				The mount -o remount file-system command remounts the named file system. For example, to remount the /home file system, the command is mount -o remount /home.
			

				To see the version of a currently installed package, use the rpm -q package command. It will return a result as follows: package-version-release.
			

			Note the words in bold italics above: username, domain.name, file-system, package, version and release. Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the system.
		

			Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For example:
		

				Publican is a DocBook publishing system.
			

 1.2. Pull-quote Conventions

			Terminal output and source code listings are set off visually from the surrounding text.
		

			Output sent to a terminal is set in mono-spaced roman and presented thus:
		
books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

			Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:
		
package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

 1.3. Notes and Warnings

			Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.
		
Note

				Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have no negative consequences, but you might miss out on a trick that makes your life easier.
			

Important

				Important boxes detail things that are easily missed: configuration changes that only apply to the current session, or services that need restarting before an update will apply. Ignoring a box labeled “Important” will not cause data loss but may cause irritation and frustration.
			

Warning

				Warnings should not be ignored. Ignoring warnings will most likely cause data loss.
			

 2. We Need Feedback!

		If you find a typographical error in this manual, or if you have thought of a way to make this manual better, we would love to hear from you! Please submit a report in Bugzilla
 [2] against the product Pacemaker Administration.
	

		When submitting a bug report, be sure to mention the manual's identifier: Pacemaker_Administration
	

		If you have a suggestion for improving the documentation, try to be as specific as possible when describing it. If you have found an error, please include the section number and some of the surrounding text so we can find it easily.
	

[2]
			http://bugs.clusterlabs.org
		

 Chapter 1. Read-Me-First

 1.1. The Scope of this Document

			The purpose of this document is to help system administrators learn how to manage a Pacemaker cluster.
		

			System administrators may be interested in other parts of the Pacemaker documentation set, such as Clusters from Scratch, a step-by-step guide to setting up an example cluster, and Pacemaker Explained, an exhaustive reference for cluster configuration.
		

			Multiple higher-level tools (both command-line and GUI) are available to simplify cluster management. However, this document focuses on the lower-level command-line tools that come with Pacemaker itself. The concepts are applicable to the higher-level tools, though the syntax would differ.
		

 1.2. What Is Pacemaker?

			Pacemaker is a high-availability cluster resource manager — software that runs on a set of hosts (a cluster of nodes) in order to preserve integrity and minimize downtime of desired services (resources).
 [3] It is maintained by the ClusterLabs community.
		

			Pacemaker’s key features include:
		
	
					Detection of and recovery from node- and service-level failures
				

	
					Ability to ensure data integrity by fencing faulty nodes
				

	
					Support for one or more nodes per cluster
				

	
					Support for multiple resource interface standards (anything that can be scripted can be clustered)
				

	
					Support (but no requirement) for shared storage
				

	
					Support for practically any redundancy configuration (active/passive, N+1, etc.)
				

	
					Automatically replicated configuration that can be updated from any node
				

	
					Ability to specify cluster-wide relationships between services, such as ordering, colocation and anti-colocation
				

	
					Support for advanced service types, such as clones (services that need to be active on multiple nodes), stateful resources (clones that can run in one of two modes), and containerized services
				

	
					Unified, scriptable cluster management tools
				

Fencing

				Fencing, also known as STONITH (an acronym for Shoot The Other Node In The Head), is the ability to ensure that it is not possible for a node to be running a service. This is accomplished via fence devices such as intelligent power switches that cut power to the target, or intelligent network switches that cut the target’s access to the local network.
			

				Pacemaker represents fence devices as a special class of resource.
			

				A cluster cannot safely recover from certain failure conditions, such as an unresponsive node, without fencing.
			

 1.3. Cluster Architecture

			At a high level, a cluster can be viewed as having these parts (which together are often referred to as the cluster stack):
		
	
					Resources: These are the reason for the cluster’s being — the services that need to be kept highly available.
				

	
					Resource agents: These are scripts or operating system components that start, stop, and monitor resources, given a set of resource parameters. These provide a uniform interface between Pacemaker and the managed services.
				

	
					Fence agents: These are scripts that execute node fencing actions, given a target and fence device parameters.
				

	
					Cluster membership layer: This component provides reliable messaging, membership, and quorum information about the cluster. Currently, Pacemaker supports Corosync as this layer.
				

	
					Cluster resource manager: Pacemaker provides the brain that processes and reacts to events that occur in the cluster. These events may include nodes joining or leaving the cluster; resource events caused by failures, maintenance, or scheduled activities; and other administrative actions. To achieve the desired availability, Pacemaker may start and stop resources and fence nodes.
				

	
					Cluster tools: These provide an interface for users to interact with the cluster. Various command-line and graphical (GUI) interfaces are available.
				

			Most managed services are not, themselves, cluster-aware. However, many popular open-source cluster filesystems make use of a common Distributed Lock Manager (DLM), which makes direct use of Corosync for its messaging and membership capabilities and Pacemaker for the ability to fence nodes.
		

 [image: Example cluster stack]

Figure 1.1. Example Cluster Stack

 1.4. Pacemaker Architecture

			Pacemaker itself is composed of multiple daemons that work together:
		
	
					pacemakerd
				

	
					pacemaker-attrd
				

	
					pacemaker-based
				

	
					pacemaker-controld
				

	
					pacemaker-execd
				

	
					pacemaker-fenced
				

	
					pacemaker-schedulerd
				

 [image: Pacemaker software components]

Figure 1.2. Internal Components

			The Pacemaker master process (pacemakerd) spawns all the other daemons, and respawns them if they unexpectedly exit.
		

			The Cluster Information Base (CIB) is an XML representation of the cluster’s configuration and the state of all nodes and resources. The CIB manager (pacemaker-based) keeps the CIB synchronized across the cluster, and handles requests to modify it.
		

			The attribute manager (pacemaker-attrd) maintains a database of attributes for all nodes, keeps it synchronized across the cluster, and handles requests to modify them. These attributes are usually recorded in the CIB.
		

			Given a snapshot of the CIB as input, the scheduler (pacemaker-schedulerd) determines what actions are necessary to achieve the desired state of the cluster.
		

			The local executor (pacemaker-execd) handles requests to execute resource agents on the local cluster node, and returns the result.
		

			The fencer (pacemaker-fenced) handles requests to fence nodes. Given a target node, the fencer decides which cluster node(s) should execute which fencing device(s), and calls the necessary fencing agents (either directly, or via requests to the fencer peers on other nodes), and returns the result.
		

			The controller (pacemaker-controld) is Pacemaker’s coordinator, maintaining a consistent view of the cluster membership and orchestrating all the other components.
		

			Pacemaker centralizes cluster decision-making by electing one of the controller instances as the Designated Controller (DC). Should the elected DC process (or the node it is on) fail, a new one is quickly established. The DC responds to cluster events by taking a current snapshot of the CIB, feeding it to the scheduler, then asking the executors (either directly on the local node, or via requests to controller peers on other nodes) and the fencer to execute any necessary actions.
		
Old daemon names

				The Pacemaker daemons were renamed in version 2.0. You may still find references to the old names, especially in documentation targeted to version 1.1.
			
	 Old name 	 New name
	
							
								attrd
							

								
							
								pacemaker-attrd
							

							
	
							
								cib
							

								
							
								pacemaker-based
							

							
	
							
								crmd
							

								
							
								pacemaker-controld
							

							
	
							
								lrmd
							

								
							
								pacemaker-execd
							

							
	
							
								stonithd
							

								
							
								pacemaker-fenced
							

							
	
							
								pacemaker_remoted
							

								
							
								pacemaker-remoted
							

							

 1.5. Node Redundancy Designs

			Pacemaker supports practically any node redundancy configuration including Active/Active, Active/Passive, N+1, N+M, N-to-1 and N-to-N.
		

			Active/passive clusters with two (or more) nodes using Pacemaker and DRBD are a cost-effective high-availability solution for many situations. One of the nodes provides the desired services, and if it fails, the other node takes over.
		

 [image: Active/Passive Redundancy]

Figure 1.3. Active/Passive Redundancy

			Pacemaker also supports multiple nodes in a shared-failover design, reducing hardware costs by allowing several active/passive clusters to be combined and share a common backup node.
		

 [image: Shared Failover]

Figure 1.4. Shared Failover

			When shared storage is available, every node can potentially be used for failover. Pacemaker can even run multiple copies of services to spread out the workload.
		

 [image: N to N Redundancy]

Figure 1.5. N to N Redundancy

[3]
				Cluster is sometimes used in other contexts to refer to hosts grouped together for other purposes, such as high-performance computing (HPC), but Pacemaker is not intended for those purposes.
			

 Chapter 2. Installing Cluster Software

 2.1. Installing the Software

			Most major Linux distributions have pacemaker packages in their standard package repositories, or the software can be built from source code. See the Install wiki page for details.
		

 2.2. Enabling Pacemaker

 2.2.1. Enabling Pacemaker For Corosync version 2 and greater

				High-level cluster management tools are available that can configure corosync for you. This document focuses on the lower-level details if you want to configure corosync yourself.
			

				Corosync configuration is normally located in /etc/corosync/corosync.conf.
			

 Example 2.1. Corosync configuration file for two nodes myhost1 and myhost2
totem {
version: 2
secauth: off
cluster_name: mycluster
transport: udpu
}

nodelist {
 node {
 ring0_addr: myhost1
 nodeid: 1
 }
 node {
 ring0_addr: myhost2
 nodeid: 2
 }
}

quorum {
provider: corosync_votequorum
two_node: 1
}

logging {
to_syslog: yes
}

 Example 2.2. Corosync configuration file for three nodes myhost1, myhost2 and myhost3
totem {
version: 2
secauth: off
cluster_name: mycluster
transport: udpu
}

nodelist {
 node {
 ring0_addr: myhost1
 nodeid: 1
 }
 node {
 ring0_addr: myhost2
 nodeid: 2
 }
 node {
 ring0_addr: myhost3
 nodeid: 3
 }
}

quorum {
provider: corosync_votequorum

}

logging {
to_syslog: yes
}

				In the above examples, the totem section defines what protocol version and options (including encryption) to use,
 [4] and gives the cluster a unique name (mycluster in these examples).
			

				The node section lists the nodes in this cluster.
			

				The quorum section defines how the cluster uses quorum. The important thing is that two-node clusters must be handled specially, so two_node: 1 must be defined for two-node clusters (and only for two-node clusters).
			

				The logging section should be self-explanatory.
			

[4]
					Please consult the Corosync website (http://www.corosync.org/) and documentation for details on enabling encryption and peer authentication for the cluster.
				

 Chapter 3. The Cluster Layer

 3.1. Pacemaker and the Cluster Layer

			Pacemaker utilizes an underlying cluster layer for two purposes:
		
	
					obtaining quorum
				

	
					messaging between nodes
				

			Currently, only Corosync 2 and later is supported for this layer.
		

 3.2. Managing Nodes in a Corosync-Based Cluster

 3.2.1. Adding a New Corosync Node

				
			

				To add a new node:
			
	
						Install Corosync and Pacemaker on the new host.
					

	
						Copy /etc/corosync/corosync.conf and /etc/corosync/authkey (if it exists) from an existing node. You may need to modify the mcastaddr option to match the new node’s IP address.
					

	
						Start the cluster software on the new host. If a log message containing "Invalid digest" appears from Corosync, the keys are not consistent between the machines.
					

 3.2.2. Removing a Corosync Node

				
			

				Because the messaging and membership layers are the authoritative source for cluster nodes, deleting them from the CIB is not a complete solution. First, one must arrange for corosync to forget about the node (pcmk-1 in the example below).
			
	
						Stop the cluster on the host to be removed. How to do this will vary with your operating system and installed versions of cluster software, for example, pcs cluster stop if you are using pcs for cluster management.
					

	
						From one of the remaining active cluster nodes, tell Pacemaker to forget about the removed host, which will also delete the node from the CIB:
					
crm_node -R pcmk-1

 3.2.3. Replacing a Corosync Node

				
			

				To replace an existing cluster node:
			
	
						Make sure the old node is completely stopped.
					

	
						Give the new machine the same hostname and IP address as the old one.
					

	
						Follow the procedure above for adding a node.
					

 Chapter 4. Configuring Pacemaker

		Pacemaker’s configuration, the CIB, is stored in XML format. Cluster administrators have multiple options for modifying the configuration either via the XML, or at a more abstract (and easier for humans to understand) level.
	

		Pacemaker reacts to configuration changes as soon as they are saved. Pacemaker’s command-line tools and most higher-level tools provide the ability to batch changes together and commit them at once, rather than make a series of small changes, which could cause avoid unnecessary actions as Pacemaker responds to each change individually.
	

		Pacemaker tracks revisions to the configuration and will reject any update older than the current revision. Thus, it is a good idea to serialize all changes to the configuration. Avoid attempting simultaneous changes, whether on the same node or different nodes, and whether manually or using some automated configuration tool.
	
Note

			It is not necessary to update the configuration on all cluster nodes. Pacemaker immediately synchronizes changes to all active members of the cluster. To reduce bandwidth, the cluster only broadcasts the incremental updates that result from your changes and uses checksums to ensure that each copy is consistent.
		

 4.1. Configuration Using Higher-level Tools

			Most users will benefit from using higher-level tools provided by projects separate from Pacemaker. Some of the most commonly used include the crm shell, hawk, and pcs.
 [5]
		

			See those projects' documentation for details on how to configure Pacemaker using them.
		

 4.2. Configuration Using Pacemaker’s Command-Line Tools

			Pacemaker provides lower-level, command-line tools to manage the cluster. Most configuration tasks can be performed with these tools, without needing any XML knowledge.
		

			To enable STONITH for example, one could run:
		
crm_attribute --name stonith-enabled --update 1

			Or, to check whether node1 is allowed to run resources, there is:
		
crm_standby --query --node node1

			Or, to change the failure threshold of my-test-rsc, one can use:
		
crm_resource -r my-test-rsc --set-parameter migration-threshold --parameter-value 3 --meta

			Examples of using these tools for specific cases will be given throughout this document where appropriate. See the man pages for further details.
		

			See Section 5.3, “Edit the CIB XML with cibadmin” for how to edit the CIB using XML.
		

			See Section 5.4, “Batch Configuration Changes with crm_shadow” for a way to make a series of changes, then commit them all at once to the live cluster.
		

 4.3. Working with CIB Properties

			Although these fields can be written to by the user, in most cases the cluster will overwrite any values specified by the user with the "correct" ones.
		

			To change the ones that can be specified by the user, for example admin_epoch, one should use:
		
cibadmin --modify --xml-text '<cib admin_epoch="42"/>'

			A complete set of CIB properties will look something like this:
		

 Example 4.1. XML attributes set for a cib element
<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2"
 admin_epoch="42" epoch="116" num_updates="1"
 cib-last-written="Mon Jan 12 15:46:39 2015" update-origin="rhel7-1"
 update-client="crm_attribute" have-quorum="1" dc-uuid="1">

 4.4. Querying and Setting Cluster Options

			
		

			Cluster options can be queried and modified using the crm_attribute tool. To get the current value of cluster-delay, you can run:
		
crm_attribute --query --name cluster-delay

			which is more simply written as
		
crm_attribute -G -n cluster-delay

			If a value is found, you’ll see a result like this:
		
crm_attribute -G -n cluster-delay
scope=crm_config name=cluster-delay value=60s

			If no value is found, the tool will display an error:
		
crm_attribute -G -n clusta-deway
scope=crm_config name=clusta-deway value=(null)
Error performing operation: No such device or address

			To use a different value (for example, 30 seconds), simply run:
		
crm_attribute --name cluster-delay --update 30s

			To go back to the cluster’s default value, you can delete the value, for example:
		
crm_attribute --name cluster-delay --delete
Deleted crm_config option: id=cib-bootstrap-options-cluster-delay name=cluster-delay

 4.4.1. When Options are Listed More Than Once

				If you ever see something like the following, it means that the option you’re modifying is present more than once.
			

 Example 4.2. Deleting an option that is listed twice
crm_attribute --name batch-limit --delete

Multiple attributes match name=batch-limit in crm_config:
Value: 50 (set=cib-bootstrap-options, id=cib-bootstrap-options-batch-limit)
Value: 100 (set=custom, id=custom-batch-limit)
Please choose from one of the matches above and supply the 'id' with --id

				In such cases, follow the on-screen instructions to perform the requested action. To determine which value is currently being used by the cluster, refer to the Rules section of Pacemaker Explained.
			

 4.5. Connecting from a Remote Machine

			
		

			Provided Pacemaker is installed on a machine, it is possible to connect to the cluster even if the machine itself is not in the same cluster. To do this, one simply sets up a number of environment variables and runs the same commands as when working on a cluster node.
		

 Table 4.1. Environment Variables Used to Connect to Remote Instances of the CIB
	Environment Variable	Default	Description
	
						
							CIB_user
						

							
						
							$USER
						

							
						
							The user to connect as. Needs to be part of the haclient group on the target host.
						

						
	
						
							CIB_passwd
						

							
						
						

							
						
							The user’s password. Read from the command line if unset.
						

						
	
						
							CIB_server
						

							
						
							localhost
						

							
						
							The host to contact
						

						
	
						
							CIB_port
						

							
						
						

							
						
							The port on which to contact the server; required.
						

						
	
						
							CIB_encrypted
						

							
						
							TRUE
						

							
						
							Whether to encrypt network traffic
						

						

			So, if c001n01 is an active cluster node and is listening on port 1234 for connections, and someuser is a member of the haclient group, then the following would prompt for someuser's password and return the cluster’s current configuration:
		
export CIB_port=1234; export CIB_server=c001n01; export CIB_user=someuser;
cibadmin -Q

			For security reasons, the cluster does not listen for remote connections by default. If you wish to allow remote access, you need to set the remote-tls-port (encrypted) or remote-clear-port (unencrypted) CIB properties (i.e., those kept in the cib tag, like num_updates and epoch).
		

 Table 4.2. Extra top-level CIB properties for remote access
	Field	Default	Description
	
						
							remote-tls-port
						

							
						
							none
						

							
						
							Listen for encrypted remote connections on this port.
						

						
	
						
							remote-clear-port
						

							
						
							none
						

							
						
							Listen for plaintext remote connections on this port.
						

						

Important

				The Pacemaker version on the administration host must be the same or greater than the version(s) on the cluster nodes. Otherwise, it may not have the schema files necessary to validate the CIB.
			

[5]
				For a list, see "Configuration Tools" at https://clusterlabs.org/components.html
			

 Chapter 5. Using Pacemaker Command-Line Tools

 5.1. Controlling Command Line Output

			Some of the pacemaker command line utilities have been converted to a new output system. Among these tools are crm_mon and stonith_admin. This is an ongoing project, and more tools will be converted over time. This system lets you control the formatting of output with --output-as= and the destination of output with --output-to=.
		

			The available formats vary by tool, but at least plain text, HTML, and XML are supported by all tools. The default format is plain text. The default destination is stdout but can be redirected to any file. Some formats support command line options for changing the style of the output. For instance:
		
crm_mon --help-output
Usage:
 crm_mon [OPTION?]

Provides a summary of cluster's current state.

Outputs varying levels of detail in a number of different formats.

Output Options:
 --output-as=FORMAT Specify output format as one of: console (default), html, text, xml
 --output-to=DEST Specify file name for output (or "-" for stdout)
 --html-cgi Add text needed to use output in a CGI program
 --html-stylesheet=URI Link to an external CSS stylesheet
 --html-title=TITLE Page title
 --text-fancy Use more highly formatted output

 5.2. Monitor a Cluster with crm_mon

			
		

			The crm_mon utility displays the current state of an active cluster. It can show the cluster status organized by node or by resource, and can be used in either single-shot or dynamically updating mode. It can also display operations performed and information about failures.
		

			Using this tool, you can examine the state of the cluster for irregularities, and see how it responds when you cause or simulate failures.
		

			See the manual page or the output of crm_mon --help for a full description of its many options.
		

 Example 5.1. Sample output from crm_mon -1
Cluster Summary:
 * Stack: corosync
 * Current DC: node2 (version 2.0.0-1) - partition with quorum
 * Last updated: Mon Jan 29 12:18:42 2018
 * Last change: Mon Jan 29 12:18:40 2018 by root via crm_attribute on node3
 * 5 nodes configured
 * 2 resources configured

Node List:
 * Online: [node1 node2 node3 node4 node5]

* Active resources:
 * Fencing (stonith:fence_xvm): Started node1
 * IP (ocf:heartbeat:IPaddr2): Started node2

 Example 5.2. Sample output from crm_mon -n -1
Cluster Summary:
 * Stack: corosync
 * Current DC: node2 (version 2.0.0-1) - partition with quorum
 * Last updated: Mon Jan 29 12:21:48 2018
 * Last change: Mon Jan 29 12:18:40 2018 by root via crm_attribute on node3
 * 5 nodes configured
 * 2 resources configured

* Node List:
 * Node node1: online
 * Fencing (stonith:fence_xvm): Started
 * Node node2: online
 * IP (ocf:heartbeat:IPaddr2): Started
 * Node node3: online
 * Node node4: online
 * Node node5: online

			As mentioned in an earlier section, the DC is the node is where decisions are made. The cluster elects a node to be DC as needed. The only significance of the choice of DC to an administrator is the fact that its logs will have the most information about why decisions were made.
		

 5.2.1. Styling crm_mon output

				
			

				Various parts of crm_mon's HTML output have a CSS class associated with them. Not everything does, but some of the most interesting portions do. In the following example, the status of each node has an "online" class and the details of each resource have an "rsc-ok" class.
			
<h2>Node List</h2>

Node: cluster01 online

ping (ocf::pacemaker:ping): Started

Node: cluster02 online

ping (ocf::pacemaker:ping): Started

				By default, a stylesheet for styling these classes is included in the head of the HTML output. The relevant portions of this stylesheet that would be used in the above example is:
			
<style>
.online { color: green }
.rsc-ok { color: green }
</style>

				If you want to override some or all of the styling, simply create your own stylesheet, place it on a web server, and pass --html-stylesheet=<URL> to crm_mon. The link is added after the default stylesheet, so your changes take precedence. You don’t need to duplicate the entire default. Only include what you want to change.
			

 5.3. Edit the CIB XML with cibadmin

			
		

			The most flexible tool for modifying the configuration is Pacemaker’s cibadmin command. With cibadmin, you can query, add, remove, update or replace any part of the configuration. All changes take effect immediately, so there is no need to perform a reload-like operation.
		

			The simplest way of using cibadmin is to use it to save the current configuration to a temporary file, edit that file with your favorite text or XML editor, and then upload the revised configuration.
		

 Example 5.3. Safely using an editor to modify the cluster configuration
cibadmin --query > tmp.xml
vi tmp.xml
cibadmin --replace --xml-file tmp.xml

			Some of the better XML editors can make use of a RELAX NG schema to help make sure any changes you make are valid. The schema describing the configuration can be found in pacemaker.rng, which may be deployed in a location such as /usr/share/pacemaker depending on your operating system distribution and how you installed the software.
		

			If you want to modify just one section of the configuration, you can query and replace just that section to avoid modifying any others.
		

 Example 5.4. Safely using an editor to modify only the resources section
cibadmin --query --scope resources > tmp.xml
vi tmp.xml
cibadmin --replace --scope resources --xml-file tmp.xml

			To quickly delete a part of the configuration, identify the object you wish to delete by XML tag and id. For example, you might search the CIB for all STONITH-related configuration:
		

 Example 5.5. Searching for STONITH-related configuration items
cibadmin --query | grep stonith
 <nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="reboot"/>
 <nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="1"/>
 <primitive id="child_DoFencing" class="stonith" type="external/vmware">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:1" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:2" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:3" type="external/vmware" class="stonith">

			If you wanted to delete the primitive tag with id child_DoFencing, you would run:
		
cibadmin --delete --xml-text '<primitive id="child_DoFencing"/>'

			See the cibadmin man page for more options.
		
Important

				Never edit the live cib.xml file directly. Pacemaker will detect such changes and refuse to use the configuration.
			

 5.4. Batch Configuration Changes with crm_shadow

			
		

			Often, it is desirable to preview the effects of a series of configuration changes before updating the live configuration all at once. For this purpose, crm_shadow creates a "shadow" copy of the configuration and arranges for all the command-line tools to use it.
		

			To begin, simply invoke crm_shadow --create with a name of your choice, and follow the simple on-screen instructions. Shadow copies are identified with a name to make it possible to have more than one.
		
Warning

				Read this section and the on-screen instructions carefully; failure to do so could result in destroying the cluster’s active configuration!
			

 Example 5.6. Creating and displaying the active sandbox
crm_shadow --create test
Setting up shadow instance
Type Ctrl-D to exit the crm_shadow shell
shadow[test]:
shadow[test] # crm_shadow --which
test

			From this point on, all cluster commands will automatically use the shadow copy instead of talking to the cluster’s active configuration. Once you have finished experimenting, you can either make the changes active via the --commit option, or discard them using the --delete option. Again, be sure to follow the on-screen instructions carefully!
		

			For a full list of crm_shadow options and commands, invoke it with the --help option.
		

 Example 5.7. Use sandbox to make multiple changes all at once, discard them, and verify real configuration is untouched
 shadow[test] # crm_failcount -r rsc_c001n01 -G
 scope=status name=fail-count-rsc_c001n01 value=0
 shadow[test] # crm_standby --node c001n02 -v on
 shadow[test] # crm_standby --node c001n02 -G
 scope=nodes name=standby value=on

 shadow[test] # cibadmin --erase --force
 shadow[test] # cibadmin --query
 <cib crm_feature_set="3.0.14" validate-with="pacemaker-3.0" epoch="112" num_updates="2" admin_epoch="0" cib-last-written="Mon Jan 8 23:26:47 2018" update-origin="rhel7-1" update-client="crm_node" update-user="root" have-quorum="1" dc-uuid="1">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
 </cib>
 shadow[test] # crm_shadow --delete test --force
 Now type Ctrl-D to exit the crm_shadow shell
 shadow[test] # exit
 # crm_shadow --which
 No active shadow configuration defined
 # cibadmin -Q
 <cib crm_feature_set="3.0.14" validate-with="pacemaker-3.0" epoch="110" num_updates="2" admin_epoch="0" cib-last-written="Mon Jan 8 23:26:47 2018" update-origin="rhel7-1" update-client="crm_node" update-user="root" have-quorum="1">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="cib-bootstrap-1" name="stonith-enabled" value="1"/>
 <nvpair id="cib-bootstrap-2" name="pe-input-series-max" value="30000"/>

			See the next section, Section 5.5, “Simulate Cluster Activity with crm_simulate”, for how to test your changes before committing them to the live cluster.
		

 5.5. Simulate Cluster Activity with crm_simulate

			
		

			The command-line tool crm_simulate shows the results of the same logic the cluster itself uses to respond to a particular cluster configuration and status.
		

			As always, the man page is the primary documentation, and should be consulted for further details. This section aims for a better conceptual explanation and practical examples.
		

 5.5.1. Replaying cluster decision-making logic

				At any given time, one node in a Pacemaker cluster will be elected DC, and that node will run Pacemaker’s scheduler to make decisions.
			

				Each time decisions need to be made (a "transition"), the DC will have log messages like "Calculated transition … saving inputs in …" with a file name. You can grab the named file and replay the cluster logic to see why particular decisions were made. The file contains the live cluster configuration at that moment, so you can also look at it directly to see the value of node attributes, etc., at that time.
			

				The simplest usage is (replacing $FILENAME with the actual file name):
			

 Example 5.8. Simulate cluster response to a given CIB
crm_simulate --simulate --xml-file $FILENAME

				That will show the cluster state when the process started, the actions that need to be taken ("Transition Summary"), and the resulting cluster state if the actions succeed. Most actions will have a brief description of why they were required.
			

				The transition inputs may be compressed. crm_simulate can handle these compressed files directly, though if you want to edit the file, you’ll need to uncompress it first.
			

				You can do the same simulation for the live cluster configuration at the current moment. This is useful mainly when using crm_shadow to create a sandbox version of the CIB; the --live-check option will use the shadow CIB if one is in effect.
			

 Example 5.9. Simulate cluster response to current live CIB or shadow CIB
crm_simulate --simulate --live-check

 5.5.2. Why decisions were made

				To get further insight into the "why", it gets user-unfriendly very quickly. If you add the --show-scores option, you will also see all the scores that went into the decision-making. The node with the highest cumulative score for a resource will run it. You can look for -INFINITY scores in particular to see where complete bans came into effect.
			

				You can also add -VVVV to get more detailed messages about what’s happening under the hood. You can add up to two more V’s even, but that’s usually useful only if you’re a masochist or tracing through the source code.
			

 5.5.3. Visualizing the action sequence

				Another handy feature is the ability to generate a visual graph of the actions needed, using the --dot-file option. This relies on the separate Graphviz
 [6] project.
			

 Example 5.10. Generate a visual graph of cluster actions from a saved CIB
crm_simulate --simulate --xml-file $FILENAME --dot-file $FILENAME.dot
dot $FILENAME.dot -Tsvg > $FILENAME.svg

				$FILENAME.dot will contain a GraphViz representation of the cluster’s response to your changes, including all actions with their ordering dependencies.
			

				$FILENAME.svg will be the same information in a standard graphical format that you can view in your browser or other app of choice. You could, of course, use other dot options to generate other formats.
			

				How to interpret the graphical output:
			
	
						Bubbles indicate actions, and arrows indicate ordering dependencies
					

	
						Resource actions have text of the form resource_action_interval node indicating that the specified action will be executed for the specified resource on the specified node, once if interval is 0 or at specified recurring milliseconds interval otherwise
					

	
						Actions with black text will be sent to the executor (that is, the appropriate agent will be invoked)
					

	
						Actions with orange text are "pseudo" actions that the cluster uses internally for ordering but require no real activity
					

	
						Actions with a solid green border are part of the transition (that is, the cluster will attempt to execute them in the given order — though a transition can be interrupted by action failure or new events)
					

	
						Dashed arrows indicate dependencies that are not present in the transition graph
					

	
						Actions with a dashed border will not be executed. If the dashed border is blue, the cluster does not feel the action needs to be executed. If the dashed border is red, the cluster would like to execute the action but cannot. Any actions depending on an action with a dashed border will not be able to execute.
					

	
						Loops should not happen, and should be reported as a bug if found.
					

 Example 5.11. Small Cluster Transition
[image: An example transition graph as represented by Graphviz]

				In the above example, it appears that a new node, pcmk-2, has come online and that the cluster is checking to make sure rsc1, rsc2 and rsc3 are not already running there (indicated by the rscN_monitor_0 entries). Once it did that, and assuming the resources were not active there, it would have liked to stop rsc1 and rsc2 on pcmk-1 and move them to pcmk-2. However, there appears to be some problem and the cluster cannot or is not permitted to perform the stop actions which implies it also cannot perform the start actions. For some reason, the cluster does not want to start rsc3 anywhere.
			

 Example 5.12. Complex Cluster Transition
[image: Complex transition graph that you're not expected to be able to read]

 5.5.4. What-if scenarios

				You can make changes to the saved or shadow CIB and simulate it again, to see how Pacemaker would react differently. You can edit the XML by hand, use command-line tools such as cibadmin with either a shadow CIB or the CIB_file environment variable set to the filename, or use higher-level tool support (see the man pages of the specific tool you’re using for how to perform actions on a saved CIB file rather than the live CIB).
			

				You can also inject node failures and/or action failures into the simulation; see the crm_simulate man page for more details.
			

				This capability is useful when using a shadow CIB to edit the configuration. Before committing the changes to the live cluster with crm_shadow --commit, you can use crm_simulate to see how the cluster will react to the changes.
			

 5.6. Manage Node Attributes, Cluster Options and Defaults with crm_attribute and attrd_updater

			
		

			crm_attribute and attrd_updater are confusingly similar tools with subtle differences.
		

			attrd_updater can query and update node attributes. crm_attribute can query and update not only node attributes, but also cluster options, resource defaults, and operation defaults.
		

			To understand the differences, it helps to understand the various types of node attribute.
		

 Table 5.1. Types of Node Attributes
	Type	Recorded in CIB?	Recorded in attribute manager memory?	Survive full cluster restart?	Manageable by crm_attribute?	Manageable by attrd_updater?
	
						
							permanent
						

							
						
							yes
						

							
						
							no
						

							
						
							yes
						

							
						
							yes
						

							
						
							no
						

						
	
						
							transient
						

							
						
							yes
						

							
						
							yes
						

							
						
							no
						

							
						
							yes
						

							
						
							yes
						

						
	
						
							private
						

							
						
							no
						

							
						
							yes
						

							
						
							no
						

							
						
							no
						

							
						
							yes
						

						

			As you can see from the table above, crm_attribute can manage permanent and transient node attributes, while attrd_updater can manage transient and private node attributes.
		

			The difference between the two tools lies mainly in how they update node attributes: attrd_updater always contacts the Pacemaker attribute manager directly, while crm_attribute will contact the attribute manager only for transient node attributes, and will instead modify the CIB directly for permanent node attributes (and for transient node attributes when unable to contact the attribute manager).
		

			By contacting the attribute manager directly, attrd_updater can change an attribute’s "dampening" (whether changes are immediately flushed to the CIB or after a specified amount of time, to minimize disk writes for frequent changes), set private node attributes (which are never written to the CIB), and set attributes for nodes that don’t yet exist.
		

			By modifying the CIB directly, crm_attribute can set permanent node attributes (which are only in the CIB and not managed by the attribute manager), and can be used with saved CIB files and shadow CIBs.
		

			However a transient node attribute is set, it is synchronized between the CIB and the attribute manager, on all nodes.
		

 5.7. Other Commonly Used Tools

			Other command-line tools include:
		
	
					crm_failcount: query or delete resource fail counts
				

	
					crm_node: manage cluster nodes
				

	
					crm_report: generate a detailed cluster report for bug submissions
				

	
					crm_resource: manage cluster resources
				

	
					crm_standby: manage standby status of nodes
				

	
					crm_verify: validate a CIB
				

	
					stonith_admin: manage fencing devices
				

			See the manual pages for details.
		

[6]
					Graph visualization software. See http://www.graphviz.org/ for details.
				

 Chapter 6. Troubleshooting Cluster Problems

 6.1. Logging

			Pacemaker by default logs messages of notice severity and higher to the system log, and messages of info severity and higher to the detail log, which by default is /var/log/pacemaker/pacemaker.log.
		

			Logging options can be controlled via environment variables at Pacemaker start-up. Where these are set varies by operating system (often /etc/sysconfig/pacemaker or /etc/default/pacemaker).
		

			Because cluster problems are often highly complex, involving multiple machines, cluster daemons, and managed services, Pacemaker logs rather verbosely to provide as much context as possible. It is an ongoing priority to make these logs more user-friendly, but by necessity there is a lot of obscure, low-level information that can make them difficult to follow.
		

			The default log rotation configuration shipped with Pacemaker (typically installed in /etc/logrotate.d/pacemaker) rotates the log when it reaches 100MB in size, or weekly, whichever comes first.
		

			If you configure debug or (Heaven forbid) trace-level logging, the logs can grow enormous quite quickly. Because rotated logs are by default named with the year, month, and day only, this can cause name collisions if your logs exceed 100MB in a single day. You can add dateformat -%Y%m%d-%H to the rotation configuration to avoid this.
		

 6.2. Transitions

			A key concept in understanding how a Pacemaker cluster functions is a transition. A transition is a set of actions that need to be taken to bring the cluster from its current state to the desired state (as expressed by the configuration).
		

			Whenever a relevant event happens (a node joining or leaving the cluster, a resource failing, etc.), the controller will ask the scheduler to recalculate the status of the cluster, which generates a new transition. The controller then performs the actions in the transition in the proper order.
		

			Each transition can be identified in the logs by a line like:
		
notice: Calculated transition 19, saving inputs in /var/lib/pacemaker/pengine/pe-input-1463.bz2

			The file listed as the "inputs" is a snapshot of the cluster configuration and state at that moment (the CIB). This file can help determine why particular actions were scheduled. The crm_simulate command, described in Section 5.5, “Simulate Cluster Activity with crm_simulate”, can be used to replay the file.
		

 6.3. Further Information About Troubleshooting

			Andrew Beekhof wrote a series of articles about troubleshooting in his blog, The Cluster Guy:
		
	
					Debugging Pacemaker
				

	
					Debugging the Policy Engine
				

	
					Pacemaker Logging
				

			The articles were written for an earlier version of Pacemaker, so many of the specific names and log messages to look for have changed, but the concepts are still valid.
		

 Chapter 7. Upgrading a Pacemaker Cluster

 7.1. Pacemaker Versioning

			Pacemaker has an overall release version, plus separate version numbers for certain internal components.
		
	
					Pacemaker release version: This version consists of three numbers (x.y.z).
				

					The major version number (the x in x.y.z) increases when at least some rolling upgrades are not possible from the previous major version. For example, a rolling upgrade from 1.0.8 to 1.1.15 should always be supported, but a rolling upgrade from 1.0.8 to 2.0.0 may not be possible.
				

					The minor version (the y in x.y.z) increases when there are significant changes in cluster default behavior, tool behavior, and/or the API interface (for software that utilizes Pacemaker libraries). The main benefit is to alert you to pay closer attention to the release notes, to see if you might be affected.
				

					The release counter (the z in x.y.z) is increased with all public releases of Pacemaker, which typically include both bug fixes and new features.
				

	
					CRM feature set: This version number applies to the communication between full cluster nodes, and is used to avoid problems in mixed-version clusters.
				

					The major version number increases when nodes with different versions would not work (rolling upgrades are not allowed). The minor version number increases when mixed-version clusters are allowed only during rolling upgrades. The minor-minor version number is ignored, but allows resource agents to detect cluster support for various features.
 [7]
				

					Pacemaker ensures that the longest-running node is the cluster’s DC. This ensures new features are not enabled until all nodes are upgraded to support them.
				

	
					Pacemaker Remote protocol version: This version applies to communication between a Pacemaker Remote node and the cluster. It increases when an older cluster node would have problems hosting the connection to a newer Pacemaker Remote node. To avoid these problems, Pacemaker Remote nodes will accept connections only from cluster nodes with the same or newer Pacemaker Remote protocol version.
				

					Unlike with CRM feature set differences between full cluster nodes, mixed Pacemaker Remote protocol versions between Pacemaker Remote nodes and full cluster nodes are fine, as long as the Pacemaker Remote nodes have the older version. This can be useful, for example, to host a legacy application in an older operating system version used as a Pacemaker Remote node.
				

	
					XML schema version: Pacemaker’s configuration syntax — what’s allowed in the Configuration Information Base (CIB) — has its own version. This allows the configuration syntax to evolve over time while still allowing clusters with older configurations to work without change.
				

 7.2. Upgrading Cluster Software

			There are three approaches to upgrading a cluster, each with advantages and disadvantages.
		

 Table 7.1. Upgrade Methods
	Method	Available between all versions	Can be used with Pacemaker Remote nodes	Service outage during upgrade	Service recovery during upgrade	Exercises failover logic	Allows change of messaging layer
 [a]
	
						
							Complete cluster shutdown
						

							
						
							yes
						

							
						
							yes
						

							
						
							always
						

							
						
							N/A
						

							
						
							no
						

							
						
							yes
						

						
	
						
							Rolling (node by node)
						

							
						
							no
						

							
						
							yes
						

							
						
							always
 [b]
						

							
						
							yes
						

							
						
							yes
						

							
						
							no
						

						
	
						
							Detach and reattach
						

							
						
							yes
						

							
						
							no
						

							
						
							only due to failure
						

							
						
							no
						

							
						
							no
						

							
						
							yes
						

						
	[a]
							Currently, Corosync version 2 and greater is the only supported cluster stack, but other stacks have been supported by past versions, and may be supported by future versions.
						

[b]
								Any active resources will be moved off the node being upgraded, so there will be at least a brief outage unless all resources can be migrated "live".
							

 7.2.1. Complete Cluster Shutdown

				In this scenario, one shuts down all cluster nodes and resources, then upgrades all the nodes before restarting the cluster.
			
	
						On each node:
					
	
								Shutdown the cluster software (pacemaker and the messaging layer).
							

	
								Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/or the underlying operating system.
							

	
								Check the configuration with the crm_verify tool.
							

	
						On each node:
					
	
								Start the cluster software. Currently, only Corosync version 2 and greater is supported as the cluster layer, but if another stack is supported in the future, the stack does not need to be the same one before the upgrade.
							

				One variation of this approach is to build a new cluster on new hosts. This allows the new version to be tested beforehand, and minimizes downtime by having the new nodes ready to be placed in production as soon as the old nodes are shut down.
			

 7.2.2. Rolling (node by node)

				In this scenario, each node is removed from the cluster, upgraded, and then brought back online, until all nodes are running the newest version.
			

				Special considerations when planning a rolling upgrade:
			
	
						If you plan to upgrade other cluster software — such as the messaging layer —  at the same time, consult that software’s documentation for its compatibility with a rolling upgrade.
					

	
						If the major version number is changing in the Pacemaker version you are upgrading to, a rolling upgrade may not be possible. Read the new version’s release notes (as well the information here) for what limitations may exist.
					

	
						If the CRM feature set is changing in the Pacemaker version you are upgrading to, you should run a mixed-version cluster only during a small rolling upgrade window. If one of the older nodes drops out of the cluster for any reason, it will not be able to rejoin until it is upgraded.
					

	
						If the Pacemaker Remote protocol version is changing, all cluster nodes should be upgraded before upgrading any Pacemaker Remote nodes.
					

				See the ClusterLabs wiki’s Release Calendar to figure out whether the CRM feature set and/or Pacemaker Remote protocol version changed between the the Pacemaker release versions in your rolling upgrade.
			

				To perform a rolling upgrade, on each node in turn:
			
	
						Put the node into standby mode, and wait for any active resources to be moved cleanly to another node. (This step is optional, but allows you to deal with any resource issues before the upgrade.)
					

	
						Shutdown the cluster software (pacemaker and the messaging layer) on the node.
					

	
						Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/or the underlying operating system.
					

	
						If this is the first node to be upgraded, check the configuration with the crm_verify tool.
					

	
						Start the messaging layer. This must be the same messaging layer (currently only Corosync version 2 and greater is supported) that the rest of the cluster is using.
					

Note

					Even if a rolling upgrade from the current version of the cluster to the newest version is not directly possible, it may be possible to perform a rolling upgrade in multiple steps, by upgrading to an intermediate version first.
				

 Table 7.2. Version Compatibility Table
	Version being Installed	Oldest Compatible Version
	
								
									Pacemaker 2.y.z
								

									
								
									Pacemaker 1.1.11
 [a]
								

								
	
								
									Pacemaker 1.y.z
								

									
								
									Pacemaker 1.0.0
								

								
	
								
									Pacemaker 0.7.z
								

									
								
									Pacemaker 0.6.z
								

								
	[a]
										Rolling upgrades from Pacemaker 1.1.z to 2.y.z are possible only if the cluster uses corosync version 2 or greater as its messaging layer, and the Cluster Information Base (CIB) uses schema 1.0 or higher in its validate-with property.
									

 7.2.3. Detach and Reattach

				The reattach method is a variant of a complete cluster shutdown, where the resources are left active and get re-detected when the cluster is restarted.
			

				This method may not be used if the cluster contains any Pacemaker Remote nodes.
			
	
						Tell the cluster to stop managing services. This is required to allow the services to remain active after the cluster shuts down.
					
crm_attribute --name maintenance-mode --update true

	
						On each node, shutdown the cluster software (pacemaker and the messaging layer), and upgrade the Pacemaker software. This may also include upgrading the messaging layer. While the underlying operating system may be upgraded at the same time, that will be more likely to cause outages in the detached services (certainly, if a reboot is required).
					

	
						Check the configuration with the crm_verify tool.
					

	
						On each node, start the cluster software. Currently, only Corosync version 2 and greater is supported as the cluster layer, but if another stack is supported in the future, the stack does not need to be the same one before the upgrade.
					

	
						Verify that the cluster re-detected all resources correctly.
					

	
						Allow the cluster to resume managing resources again:
					
crm_attribute --name maintenance-mode --delete

Note

					While the goal of the detach-and-reattach method is to avoid disturbing running services, resources may still move after the upgrade if any resource’s location is governed by a rule based on transient node attributes. Transient node attributes are erased when the node leaves the cluster. A common example is using the ocf:pacemaker:ping resource to set a node attribute used to locate other resources.
				

 7.3. Upgrading the Configuration

			
		

			The CIB schema version can change from one Pacemaker version to another.
		

			After cluster software is upgraded, the cluster will continue to use the older schema version that it was previously using. This can be useful, for example, when administrators have written tools that modify the configuration, and are based on the older syntax.
 [8]
		

			However, when using an older syntax, new features may be unavailable, and there is a performance impact, since the cluster must do a non-persistent configuration upgrade before each transition. So while using the old syntax is possible, it is not advisable to continue using it indefinitely.
		

			Even if you wish to continue using the old syntax, it is a good idea to follow the upgrade procedure outlined below, except for the last step, to ensure that the new software has no problems with your existing configuration (since it will perform much the same task internally).
		

			If you are brave, it is sufficient simply to run cibadmin --upgrade.
		

			A more cautious approach would proceed like this:
		
	
					Create a shadow copy of the configuration. The later commands will automatically operate on this copy, rather than the live configuration.
				
crm_shadow --create shadow

	
					Verify the configuration is valid with the new software (which may be stricter about syntax mistakes, or may have dropped support for deprecated features):
				
crm_verify --live-check

	
					Fix any errors or warnings.
				

	
					Perform the upgrade:
				
cibadmin --upgrade

	
					If this step fails, there are three main possibilities:
				
	
							The configuration was not valid to start with (did you do steps 2 and 3?).
						

	
							The transformation failed - report a bug or email the project.
						

	
							The transformation was successful but produced an invalid result.
						

							If the result of the transformation is invalid, you may see a number of errors from the validation library. If these are not helpful, visit the Validation FAQ wiki page and/or try the manual upgrade procedure described below.
						

	
					Check the changes:
				
crm_shadow --diff

					If at this point there is anything about the upgrade that you wish to fine-tune (for example, to change some of the automatic IDs), now is the time to do so:
				
crm_shadow --edit

					This will open the configuration in your favorite editor (whichever is specified by the standard $EDITOR environment variable).
				

	
					Preview how the cluster will react:
				
crm_simulate --live-check --save-dotfile shadow.dot -S
dot -Tsvg shadow.dot -o shadow.svg

					You can then view shadow.svg with any compatible image viewer or web browser. Verify that either no resource actions will occur or that you are happy with any that are scheduled. If the output contains actions you do not expect (possibly due to changes to the score calculations), you may need to make further manual changes. See Section 5.5, “Simulate Cluster Activity with crm_simulate” for further details on how to interpret the output of crm_simulate and dot.
				

	
					Upload the changes:
				
crm_shadow --commit shadow --force

					In the unlikely event this step fails, please report a bug.
				

Note

				 It is also possible to perform the configuration upgrade steps manually:
			
	
						Locate the upgrade*.xsl conversion scripts provided with the source code. These will often be installed in a location such as /usr/share/pacemaker, or may be obtained from the source repository.
					

	
						Run the conversion scripts that apply to your older version, for example:
					
xsltproc /path/to/upgrade06.xsl config06.xml > config10.xml

	
						Locate the pacemaker.rng script (from the same location as the xsl files).
					

	
						Check the XML validity:
					
xmllint --relaxng /path/to/pacemaker.rng config10.xml

				The advantage of this method is that it can be performed without the cluster running, and any validation errors are often more informative.
			

 7.4. What Changed in 2.0

			The main goal of the 2.0 release was to remove support for deprecated syntax, along with some small changes in default configuration behavior and tool behavior. Highlights:
		
	
					Only Corosync version 2 and greater is now supported as the underlying cluster layer. Support for Heartbeat and Corosync 1 (including CMAN) is removed.
				

	
					The Pacemaker detail log file is now stored in /var/log/pacemaker/pacemaker.log by default.
				

	
					The record-pending cluster property now defaults to true, which allows status tools such as crm_mon to show operations that are in progress.
				

	
					Support for a number of deprecated build options, environment variables, and configuration settings has been removed.
				

	
					The master tag has been deprecated in favor of using a clone tag with the new promotable meta-attribute set to true. "Master/slave" clone resources are now referred to as "promotable" clone resources, though it will take longer for the full terminology change to be completed.
				

	
					The public API for Pacemaker libraries that software applications can use has changed significantly.
				

			For a detailed list of changes, see the release notes and the Pacemaker 2.0 Changes page on the ClusterLabs wiki.
		

 7.5. What Changed in 1.0

 7.5.1. New

	
						Failure timeouts.
					

	
						New section for resource and operation defaults.
					

	
						Tool for making offline configuration changes.
					

	
						Rules, instance_attributes, meta_attributes and sets of operations can be defined once and referenced in multiple places.
					

	
						The CIB now accepts XPath-based create/modify/delete operations. See the cibadmin help text.
					

	
						Multi-dimensional colocation and ordering constraints.
					

	
						The ability to connect to the CIB from non-cluster machines.
					

	
						Allow recurring actions to be triggered at known times.
					

 7.5.2. Changed

	
						Syntax
					
	
								All resource and cluster options now use dashes (-) instead of underscores (_)
							

	
								master_slave was renamed to master
							

	
								The attributes container tag was removed
							

	
								The operation field pre-req has been renamed requires
							

	
								All operations must have an interval, start/stop must have it set to zero
							

	
						The stonith-enabled option now defaults to true.
					

	
						The cluster will refuse to start resources if stonith-enabled is true (or unset) and no STONITH resources have been defined
					

	
						The attributes of colocation and ordering constraints were renamed for clarity.
					

	
						resource-failure-stickiness has been replaced by migration-threshold.
					

	
						The parameters for command-line tools have been made consistent
					

	
						Switched to RelaxNG schema validation and libxml2 parser
					
	
								id fields are now XML IDs which have the following limitations:
							
	
										id’s cannot contain colons (:)
									

	
										id’s cannot begin with a number
									

	
										id’s must be globally unique (not just unique for that tag)
									

	
								Some fields (such as those in constraints that refer to resources) are IDREFs.
							

								This means that they must reference existing resources or objects in order for the configuration to be valid. Removing an object which is referenced elsewhere will therefore fail.
							

	
								The CIB representation, from which a MD5 digest is calculated to verify CIBs on the nodes, has changed.
							

								This means that every CIB update will require a full refresh on any upgraded nodes until the cluster is fully upgraded to 1.0. This will result in significant performance degradation and it is therefore highly inadvisable to run a mixed 1.0/0.6 cluster for any longer than absolutely necessary.
							

	
						Ping node information no longer needs to be added to ha.cf.
					

						Simply include the lists of hosts in your ping resource(s).
					

 7.5.3. Removed

	
						Syntax
					
	
								It is no longer possible to set resource meta options as top-level attributes. Use meta attributes instead.
							

	
								Resource and operation defaults are no longer read from crm_config.
							

[7]
						Before CRM feature set 3.1.0 (Pacemaker 2.0.0), the minor-minor version number was treated the same as the minor version.
					

[8]
				As of Pacemaker 2.0.0, only schema versions pacemaker-1.0 and higher are supported (excluding pacemaker-1.1, which was an experimental schema now known as pacemaker-next).
			

 Chapter 8. Resource Agents

 8.1. Resource Agent Actions

			If one resource depends on another resource via constraints, the cluster will interpret an expected result as sufficient to continue with dependent actions. This may cause timing issues if the resource agent start returns before the service is not only launched but fully ready to perform its function, or if the resource agent stop returns before the service has fully released all its claims on system resources. At a minimum, the start or stop should not return before a status command would return the expected (started or stopped) result.
		

 8.2. OCF Resource Agents

 8.2.1. Location of Custom Scripts

				 OCF Resource Agents are found in /usr/lib/ocf/resource.d/provider
			

				When creating your own agents, you are encouraged to create a new directory under /usr/lib/ocf/resource.d/ so that they are not confused with (or overwritten by) the agents shipped by existing providers.
			

				So, for example, if you choose the provider name of bigCorp and want a new resource named bigApp, you would create a resource agent called /usr/lib/ocf/resource.d/bigCorp/bigApp and define a resource:
			
<primitive id="custom-app" class="ocf" provider="bigCorp" type="bigApp"/>

 8.2.2. Actions

				All OCF resource agents are required to implement the following actions.
			

 Table 8.1. Required Actions for OCF Agents
	Action	Description	Instructions
	
							
								start
							

								
							
								Start the resource
							

								
							
								Return 0 on success and an appropriate error code otherwise. Must not report success until the resource is fully active.
							

							
	
							
								stop
							

								
							
								Stop the resource
							

								
							
								Return 0 on success and an appropriate error code otherwise. Must not report success until the resource is fully stopped.
							

							
	
							
								monitor
							

								
							
								Check the resource’s state
							

								
							
								Exit 0 if the resource is running, 7 if it is stopped, and anything else if it is failed.
							

							
								NOTE: The monitor script should test the state of the resource on the local machine only.
							

							
	
							
								meta-data
							

								
							
								Describe the resource
							

								
							
								Provide information about this resource as an XML snippet. Exit with 0.
							

							
								NOTE: This is not performed as root.
							

							
	
							
								validate-all
							

								
							
								Verify the supplied parameters
							

								
							
								Return 0 if parameters are valid, 2 if not valid, and 6 if resource is not configured.
							

							

				Additional requirements (not part of the OCF specification) are placed on agents that will be used for advanced concepts such as clone resources.
			

 Table 8.2. Optional Actions for OCF Resource Agents
	Action	Description	Instructions
	
							
								promote
							

								
							
								Promote the local instance of a promotable clone resource to the master (primary) state.
							

								
							
								Return 0 on success
							

							
	
							
								demote
							

								
							
								Demote the local instance of a promotable clone resource to the slave (secondary) state.
							

								
							
								Return 0 on success
							

							
	
							
								notify
							

								
							
								Used by the cluster to send the agent pre- and post-notification events telling the resource what has happened and will happen.
							

								
							
								Must not fail. Must exit with 0
							

							

				One action specified in the OCF specs, recover, is not currently used by the cluster. It is intended to be a variant of the start action that tries to recover a resource locally.
			
Important

					If you create a new OCF resource agent, use ocf-tester to verify that the agent complies with the OCF standard properly.
				

 8.2.3. How are OCF Return Codes Interpreted?

				The first thing the cluster does is to check the return code against the expected result. If the result does not match the expected value, then the operation is considered to have failed, and recovery action is initiated.
			

				There are three types of failure recovery:
			

 Table 8.3. Types of recovery performed by the cluster
	Type	Description	Action Taken by the Cluster
	
							
								soft
							

								
							
								A transient error occurred
							

								
							
								Restart the resource or move it to a new location
							

							
	
							
								hard
							

								
							
								A non-transient error that may be specific to the current node occurred
							

								
							
								Move the resource elsewhere and prevent it from being retried on the current node
							

							
	
							
								fatal
							

								
							
								A non-transient error that will be common to all cluster nodes (e.g. a bad configuration was specified)
							

								
							
								Stop the resource and prevent it from being started on any cluster node
							

							

 8.2.4. OCF Return Codes

				The following table outlines the different OCF return codes and the type of recovery the cluster will initiate when a failure code is received. Although counterintuitive, even actions that return 0 (aka. OCF_SUCCESS) can be considered to have failed, if 0 was not the expected return value.
			

 Table 8.4. OCF Return Codes and their Recovery Types
	RC	OCF Alias	Description	RT
	
							
								0
							

								
							
								OCF_SUCCESS
							

								
							
								Success. The command completed successfully. This is the expected result for all start, stop, promote and demote commands.
							

								
							
								soft
							

							
	
							
								1
							

								
							
								OCF_ERR_GENERIC
							

								
							
								Generic "there was a problem" error code.
							

								
							
								soft
							

							
	
							
								2
							

								
							
								OCF_ERR_ARGS
							

								
							
								The resource’s configuration is not valid on this machine. E.g. it refers to a location not found on the node.
							

								
							
								hard
							

							
	
							
								3
							

								
							
								OCF_ERR_UNIMPLEMENTED
							

								
							
								The requested action is not implemented.
							

								
							
								hard
							

							
	
							
								4
							

								
							
								OCF_ERR_PERM
							

								
							
								The resource agent does not have sufficient privileges to complete the task.
							

								
							
								hard
							

							
	
							
								5
							

								
							
								OCF_ERR_INSTALLED
							

								
							
								The tools required by the resource are not installed on this machine.
							

								
							
								hard
							

							
	
							
								6
							

								
							
								OCF_ERR_CONFIGURED
							

								
							
								The resource’s configuration is invalid. E.g. required parameters are missing.
							

								
							
								fatal
							

							
	
							
								7
							

								
							
								OCF_NOT_RUNNING
							

								
							
								The resource is safely stopped. The cluster will not attempt to stop a resource that returns this for any action.
							

								
							
								N/A
							

							
	
							
								8
							

								
							
								OCF_RUNNING_MASTER
							

								
							
								The resource is running in master mode.
							

								
							
								soft
							

							
	
							
								9
							

								
							
								OCF_FAILED_MASTER
							

								
							
								The resource is in master mode but has failed. The resource will be demoted, stopped and then started (and possibly promoted) again.
							

								
							
								soft
							

							
	
							
								other
							

								
							
								N/A
							

								
							
								Custom error code.
							

								
							
								soft
							

							

				Exceptions to the recovery handling described above:
			
	
						Probes (non-recurring monitor actions) that find a resource active (or in master mode) will not result in recovery action unless it is also found active elsewhere.
					

	
						The recovery action taken when a resource is found active more than once is determined by the resource’s multiple-active property.
					

	
						Recurring actions that return OCF_ERR_UNIMPLEMENTED do not cause any type of recovery.
					

 8.3. LSB Resource Agents (Init Scripts)

 8.3.1. LSB Compliance

				The relevant part of the LSB specifications includes a description of all the return codes listed here.
			

				Assuming some_service is configured correctly and currently inactive, the following sequence will help you determine if it is LSB-compatible:
			
	
						Start (stopped):
					
/etc/init.d/some_service start ; echo "result: $?"
	
								Did the service start?
							

	
								Did the echo command print result: 0 (in addition to the init script’s usual output)?
							

	
						Status (running):
					
/etc/init.d/some_service status ; echo "result: $?"
	
								Did the script accept the command?
							

	
								Did the script indicate the service was running?
							

	
								Did the echo command print result: 0 (in addition to the init script’s usual output)?
							

	
						Start (running):
					
/etc/init.d/some_service start ; echo "result: $?"
	
								Is the service still running?
							

	
								Did the echo command print result: 0 (in addition to the init script’s usual output)?
							

	
						Stop (running):
					
/etc/init.d/some_service stop ; echo "result: $?"
	
								Was the service stopped?
							

	
								Did the echo command print result: 0 (in addition to the init script’s usual output)?
							

	
						Status (stopped):
					
/etc/init.d/some_service status ; echo "result: $?"
	
								Did the script accept the command?
							

	
								Did the script indicate the service was not running?
							

	
								Did the echo command print result: 3 (in addition to the init script’s usual output)?
							

	
						Stop (stopped):
					
/etc/init.d/some_service stop ; echo "result: $?"
	
								Is the service still stopped?
							

	
								Did the echo command print result: 0 (in addition to the init script’s usual output)?
							

	
						Status (failed):
					
	
								This step is not readily testable and relies on manual inspection of the script.
							

								The script can use one of the error codes (other than 3) listed in the LSB spec to indicate that it is active but failed. This tells the cluster that before moving the resource to another node, it needs to stop it on the existing one first.
							

				If the answer to any of the above questions is no, then the script is not LSB-compliant. Your options are then to either fix the script or write an OCF agent based on the existing script.
			

 Appendix A. Revision History

			Revision History
	Revision 1-0	Tue Jan 23 2018	Andrew Beekhof, Ken Gaillot
	
						Move administration-oriented information from Pacemaker Explained into its own book

				
	Revision 1-1	Mon Jan 28 2019	Ken Gaillot, Jan Pokorný
	
						Add "Troubleshooting" chapter, minor clarifications and reformatting

				
	Revision 1-2	Mon May 13 2019	Ken Gaillot
	
						Overhaul configuration how-to

				
	Revision 1-3	Tue Oct 15 2019	Ken Gaillot
	
						Add Tools chapter

				
	Revision 2-0	Tue Nov 5 2019	Chris Lumens
	
						Update for crm_mon changes in 2.0.3

				
	Revision 2-1	Sun Dec 22 2019	Ferenc Wagner
	
						Update log example to how it would look with current changes

				

	

 Index

Symbols
	0
		OCF_SUCCESS, OCF Return Codes

	1
		OCF_ERR_GENERIC, OCF Return Codes

	2
		OCF_ERR_ARGS, OCF Return Codes

	3
		OCF_ERR_UNIMPLEMENTED, OCF Return Codes

	4
		OCF_ERR_PERM, OCF Return Codes

	5
		OCF_ERR_INSTALLED, OCF Return Codes

	6
		OCF_ERR_CONFIGURED, OCF Return Codes

	7
		OCF_NOT_RUNNING, OCF Return Codes

	8
		OCF_RUNNING_MASTER, OCF Return Codes

	9
		OCF_FAILED_MASTER, OCF Return Codes

A
	Action
		demote, Actions
	meta-data, Actions
	monitor, Actions
	notify, Actions
	promote, Actions
	start, Actions
	stop, Actions
	validate-all, Actions

	Add Cluster Node, Adding a New Corosync Node
		Corosync, Adding a New Corosync Node

	attrd_updater, Manage Node Attributes, Cluster Options and Defaults with crm_attribute and attrd_updater

C
	Changing cluster stack, Upgrading Cluster Software
	cibadmin, Edit the CIB XML with cibadmin
	CIB_encrypted, Connecting from a Remote Machine
	CIB_passwd, Connecting from a Remote Machine
	CIB_port, Connecting from a Remote Machine
	CIB_server, Connecting from a Remote Machine
	CIB_user, Connecting from a Remote Machine
	Cluster
		Querying Options, Querying and Setting Cluster Options
	Remote administration, Connecting from a Remote Machine
	Remote connection, Connecting from a Remote Machine
	Setting Options, Querying and Setting Cluster Options
	switching between stacks, Upgrading Cluster Software

	Cluster Option, Querying and Setting Cluster Options
	Command-line tool
		attrd_updater, Manage Node Attributes, Cluster Options and Defaults with crm_attribute and attrd_updater
	cibadmin, Edit the CIB XML with cibadmin
	crm_attribute, Manage Node Attributes, Cluster Options and Defaults with crm_attribute and attrd_updater
	crm_failcount, Other Commonly Used Tools
	crm_mon, Monitor a Cluster with crm_mon
		css, Styling crm_mon output

	crm_node, Other Commonly Used Tools
	crm_report, Other Commonly Used Tools
	crm_shadow, Batch Configuration Changes with crm_shadow
	crm_simulate, Simulate Cluster Activity with crm_simulate
	crm_standby, Other Commonly Used Tools
	crm_verify, Other Commonly Used Tools
	stonith_admin, Other Commonly Used Tools

	Configuration, Upgrading the Configuration
		upgrade manually, Upgrading the Configuration
	upgrading, Upgrading the Configuration
	validate XML, Upgrading the Configuration
	verify, Upgrading the Configuration

	convert, Upgrading the Configuration
	Corosync, Adding a New Corosync Node, Removing a Corosync Node, Replacing a Corosync Node
		Add Cluster Node, Adding a New Corosync Node
	Remove Cluster Node, Removing a Corosync Node
	Replace Cluster Node, Replacing a Corosync Node

	crm_attribute, Manage Node Attributes, Cluster Options and Defaults with crm_attribute and attrd_updater
	crm_failcount, Other Commonly Used Tools
	crm_mon, Monitor a Cluster with crm_mon
		css, Styling crm_mon output

	crm_node, Other Commonly Used Tools
	crm_report, Other Commonly Used Tools
	crm_shadow, Batch Configuration Changes with crm_shadow
	crm_simulate, Simulate Cluster Activity with crm_simulate
	crm_standby, Other Commonly Used Tools
	crm_verify, Other Commonly Used Tools
	css, Styling crm_mon output

D
	demote, Actions
		OCF Action, Actions

E
	Environment Variable
		CIB_encrypted, Connecting from a Remote Machine
	CIB_passwd, Connecting from a Remote Machine
	CIB_port, Connecting from a Remote Machine
	CIB_server, Connecting from a Remote Machine
	CIB_user, Connecting from a Remote Machine

	error
		fatal, How are OCF Return Codes Interpreted?
	hard, How are OCF Return Codes Interpreted?
	soft, How are OCF Return Codes Interpreted?

F
	fatal, How are OCF Return Codes Interpreted?
		OCF error, How are OCF Return Codes Interpreted?

	feedback
		contact information for this manual, We Need Feedback!

H
	hard, How are OCF Return Codes Interpreted?
		OCF error, How are OCF Return Codes Interpreted?

M
	meta-data, Actions
		OCF Action, Actions

	monitor, Actions
		OCF Action, Actions

N
	notify, Actions
		OCF Action, Actions

O
	OCF
		Action
		demote, Actions
	meta-data, Actions
	monitor, Actions
	notify, Actions
	promote, Actions
	start, Actions
	stop, Actions
	validate-all, Actions

	error
		fatal, How are OCF Return Codes Interpreted?
	hard, How are OCF Return Codes Interpreted?
	soft, How are OCF Return Codes Interpreted?

	OCF Action, Actions
	OCF error, How are OCF Return Codes Interpreted?
	OCF Resource Agents, Location of Custom Scripts
	ocf-tester, Actions
	OCF_ERR_ARGS, OCF Return Codes
	OCF_ERR_CONFIGURED, OCF Return Codes
	OCF_ERR_GENERIC, OCF Return Codes
	OCF_ERR_INSTALLED, OCF Return Codes
	OCF_ERR_PERM, OCF Return Codes
	OCF_ERR_UNIMPLEMENTED, OCF Return Codes
	OCF_FAILED_MASTER, OCF Return Codes
	OCF_NOT_RUNNING, OCF Return Codes
	OCF_RUNNING_MASTER, OCF Return Codes
	OCF_SUCCESS, OCF Return Codes
	Option
		remote-clear-port, Connecting from a Remote Machine
	remote-tls-port, Connecting from a Remote Machine

	other, OCF Return Codes

P
	promote, Actions
		OCF Action, Actions

Q
	Querying
		Cluster Option, Querying and Setting Cluster Options

	Querying Options, Querying and Setting Cluster Options

R
	reattach, Upgrading Cluster Software
	reattach upgrade, Upgrading Cluster Software
	Remote administration, Connecting from a Remote Machine
	Remote connection, Connecting from a Remote Machine
	Remote Connection
		Option
		remote-clear-port, Connecting from a Remote Machine
	remote-tls-port, Connecting from a Remote Machine

	Remote Connection Option, Connecting from a Remote Machine
	remote-clear-port, Connecting from a Remote Machine
		Remote Connection Option, Connecting from a Remote Machine

	remote-tls-port, Connecting from a Remote Machine
		Remote Connection Option, Connecting from a Remote Machine

	Remove Cluster Node, Removing a Corosync Node
		Corosync, Removing a Corosync Node

	Replace Cluster Node, Replacing a Corosync Node
		Corosync, Replacing a Corosync Node

	Return Code
		0
		OCF_SUCCESS, OCF Return Codes

	1
		OCF_ERR_GENERIC, OCF Return Codes

	2
		OCF_ERR_ARGS, OCF Return Codes

	3
		OCF_ERR_UNIMPLEMENTED, OCF Return Codes

	4
		OCF_ERR_PERM, OCF Return Codes

	5
		OCF_ERR_INSTALLED, OCF Return Codes

	6
		OCF_ERR_CONFIGURED, OCF Return Codes

	7
		OCF_NOT_RUNNING, OCF Return Codes

	8
		OCF_RUNNING_MASTER, OCF Return Codes

	9
		OCF_FAILED_MASTER, OCF Return Codes

	OCF_ERR_ARGS, OCF Return Codes
	OCF_ERR_CONFIGURED, OCF Return Codes
	OCF_ERR_GENERIC, OCF Return Codes
	OCF_ERR_INSTALLED, OCF Return Codes
	OCF_ERR_PERM, OCF Return Codes
	OCF_ERR_UNIMPLEMENTED, OCF Return Codes
	OCF_FAILED_MASTER, OCF Return Codes
	OCF_NOT_RUNNING, OCF Return Codes
	OCF_RUNNING_MASTER, OCF Return Codes
	OCF_SUCCESS, OCF Return Codes
	other, OCF Return Codes

	rolling, Upgrading Cluster Software
	rolling upgrade, Upgrading Cluster Software

S
	Setting
		Cluster Option, Querying and Setting Cluster Options

	Setting Options, Querying and Setting Cluster Options
	shutdown, Upgrading Cluster Software
	shutdown upgrade, Upgrading Cluster Software
	soft, How are OCF Return Codes Interpreted?
		OCF error, How are OCF Return Codes Interpreted?

	start, Actions
		OCF Action, Actions

	stonith_admin, Other Commonly Used Tools
	stop, Actions
		OCF Action, Actions

	switching between stacks, Upgrading Cluster Software

U
	upgrade
		Configuration, Upgrading the Configuration
	reattach, Upgrading Cluster Software
	rolling, Upgrading Cluster Software
	shutdown, Upgrading Cluster Software

	upgrade manually, Upgrading the Configuration
	upgrading, Upgrading the Configuration

V
	validate configuration, Upgrading the Configuration
	validate XML, Upgrading the Configuration
	validate-all, Actions
		OCF Action, Actions

	verify, Upgrading the Configuration
		Configuration, Upgrading the Configuration

X
	XML
		convert, Upgrading the Configuration

OEBPS/Common_Content/images/18.png

OEBPS/images/Policy-Engine-big.png

OEBPS/Common_Content/images/dot2.png

OEBPS/images/pcmk-shared-failover.png

OEBPS/Common_Content/images/h1-bg.png

OEBPS/images/Partitioning.png

OEBPS/Common_Content/images/26.png

OEBPS/content.opf
 1_idm45698788513520 Pacemaker Administration This document has instructions and tips for system administrators who need to manage high-availability clusters using Pacemaker. en

OEBPS/images/Policy-Engine-small-small.png

OEBPS/Common_Content/images/shine.png

OEBPS/images/Installer.png

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/pacemaker-logo.png

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/red.png

OEBPS/images/Policy-Engine-big-small.png

OEBPS/Common_Content/images/28.png

OEBPS/images/pcmk-stack-small.png

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/image_left.png

OEBPS/images/three-sets.png

OEBPS/Common_Content/images/16.png

OEBPS/images/pcmk-shared-failover-large.png

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/images/5.png

OEBPS/images/pcmk-colocated-sets-large.png

OEBPS/images/Console.png

OEBPS/images/pcmk-overview-small.png

OEBPS/images/pcmk-active-passive-large.png

OEBPS/images/pcmk-active-active-small.png

OEBPS/images/Policy-Engine-small.dot
 digraph "g" {
"rsc1_monitor_0 pcmk-2" -> "probe_complete pcmk-2" [style = bold]
"rsc1_monitor_0 pcmk-2" [style=bold color="green" fontcolor="black"]
"rsc1_stop_0 pcmk-1" [style=dashed color="red" fontcolor="black"]
"rsc1_start_0 pcmk-2" [style=dashed color="red" fontcolor="black"]
"rsc1_stop_0 pcmk-1" -> "rsc1_start_0 pcmk-2" [style = dashed]
"rsc1_stop_0 pcmk-1" -> "all_stopped" [style = dashed]
"probe_complete" -> "rsc1_start_0 pcmk-2" [style = dashed]

"rsc2_monitor_0 pcmk-2" -> "probe_complete pcmk-2" [style = bold]
"rsc2_monitor_0 pcmk-2" [style=bold color="green" fontcolor="black"]
"rsc2_stop_0 pcmk-1" [style=dashed color="red" fontcolor="black"]
"rsc2_start_0 pcmk-2" [style=dashed color="red" fontcolor="black"]
"rsc2_stop_0 pcmk-1" -> "rsc2_start_0 pcmk-2" [style = dashed]
"rsc2_stop_0 pcmk-1" -> "all_stopped" [style = dashed]
"probe_complete" -> "rsc2_start_0 pcmk-2" [style = dashed]

"rsc3_monitor_0 pcmk-2" -> "probe_complete pcmk-2" [style = bold]
"rsc3_monitor_0 pcmk-2" [style=bold color="green" fontcolor="black"]
"rsc3_stop_0 pcmk-1" [style=dashed color="blue" fontcolor="orange"]
"rsc3_start_0 pcmk-2" [style=dashed color="blue" fontcolor="black"]
"rsc3_stop_0 pcmk-1" -> "all_stopped" [style = dashed]
"probe_complete" -> "rsc3_start_0 pcmk-2" [style = dashed]

"probe_complete pcmk-2" -> "probe_complete" [style = bold]
"probe_complete pcmk-2" [style=bold color="green" fontcolor="black"]
"probe_complete" [style=bold color="green" fontcolor="orange"]

"all_stopped" [style=dashed color="red" fontcolor="orange"]

}

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/title_logo.png

OEBPS/Common_Content/images/37.png

OEBPS/images/pcmk-overview.png

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/warning.png

OEBPS/images/pcmk-active-active-large.png

OEBPS/images/pcmk-overview-large.png

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/9.png

OEBPS/images/pcmk-shared-failover-small.png

OEBPS/images/pcmk-stack.png

OEBPS/images/Policy-Engine-small.png

OEBPS/images/pcmk-colocated-sets-small.png

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/images/19.png

OEBPS/images/Network.png

OEBPS/images/pcmk-active-active.png

OEBPS/Common_Content/images/17.png

OEBPS/images/pcmk-stack-large.png

OEBPS/images/pcmk-active-passive-small.png

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/images/10.png

OEBPS/images/resource-set.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/images/33.png

OEBPS/images/Editing-eth0.png

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/images/4.png

OEBPS/images/Welcome.png

OEBPS/images/Policy-Engine-small-large.png

OEBPS/Common_Content/images/21.png

OEBPS/images/pcmk-colocated-sets.png

OEBPS/Common_Content/images/31.png

OEBPS/images/Policy-Engine-big.dot
digraph "g" {
"Cancel drbd0:0_monitor_10000 frigg" -> "drbd0:0_demote_0 frigg" [style = bold]
"Cancel drbd0:0_monitor_10000 frigg" [style=bold color="green" fontcolor="black"]
"Cancel drbd0:1_monitor_12000 odin" -> "drbd0:1_promote_0 odin" [style = bold]
"Cancel drbd0:1_monitor_12000 odin" [style=bold color="green" fontcolor="black"]
"IPaddr0_monitor_5000 odin" [style=bold color="green" fontcolor="black"]
"IPaddr0_start_0 odin" -> "IPaddr0_monitor_5000 odin" [style = bold]
"IPaddr0_start_0 odin" -> "MailTo_start_0 odin" [style = bold]
"IPaddr0_start_0 odin" -> "group_running_0" [style = bold]
"IPaddr0_start_0 odin" [style=bold color="green" fontcolor="black"]
"MailTo_start_0 odin" -> "group_running_0" [style = bold]
"MailTo_start_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:0_demote_0 frigg" -> "drbd0:0_monitor_12000 frigg" [style = bold]
"drbd0:0_demote_0 frigg" -> "ms_drbd_demoted_0" [style = bold]
"drbd0:0_demote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_monitor_12000 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_post_notify_demote_0 frigg" -> "ms_drbd_confirmed-post_notify_demoted_0" [style = bold]
"drbd0:0_post_notify_demote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_post_notify_promote_0 frigg" -> "ms_drbd_confirmed-post_notify_promoted_0" [style = bold]
"drbd0:0_post_notify_promote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_pre_notify_demote_0 frigg" -> "ms_drbd_confirmed-pre_notify_demote_0" [style = bold]
"drbd0:0_pre_notify_demote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:0_pre_notify_promote_0 frigg" -> "ms_drbd_confirmed-pre_notify_promote_0" [style = bold]
"drbd0:0_pre_notify_promote_0 frigg" [style=bold color="green" fontcolor="black"]
"drbd0:1_monitor_10000 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_post_notify_demote_0 odin" -> "ms_drbd_confirmed-post_notify_demoted_0" [style = bold]
"drbd0:1_post_notify_demote_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_post_notify_promote_0 odin" -> "ms_drbd_confirmed-post_notify_promoted_0" [style = bold]
"drbd0:1_post_notify_promote_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_pre_notify_demote_0 odin" -> "ms_drbd_confirmed-pre_notify_demote_0" [style = bold]
"drbd0:1_pre_notify_demote_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_pre_notify_promote_0 odin" -> "ms_drbd_confirmed-pre_notify_promote_0" [style = bold]
"drbd0:1_pre_notify_promote_0 odin" [style=bold color="green" fontcolor="black"]
"drbd0:1_promote_0 odin" -> "drbd0:1_monitor_10000 odin" [style = bold]
"drbd0:1_promote_0 odin" -> "ms_drbd_promoted_0" [style = bold]
"drbd0:1_promote_0 odin" [style=bold color="green" fontcolor="black"]
"group_running_0" [style=bold color="green" fontcolor="orange"]
"group_start_0" -> "IPaddr0_start_0 odin" [style = bold]
"group_start_0" -> "MailTo_start_0 odin" [style = bold]
"group_start_0" -> "group_running_0" [style = bold]
"group_start_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_confirmed-post_notify_demoted_0" -> "drbd0:0_monitor_12000 frigg" [style = bold]
"ms_drbd_confirmed-post_notify_demoted_0" -> "drbd0:1_monitor_10000 odin" [style = bold]
"ms_drbd_confirmed-post_notify_demoted_0" -> "ms_drbd_pre_notify_promote_0" [style = bold]
"ms_drbd_confirmed-post_notify_demoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_confirmed-post_notify_promoted_0" -> "drbd0:0_monitor_12000 frigg" [style = bold]
"ms_drbd_confirmed-post_notify_promoted_0" -> "drbd0:1_monitor_10000 odin" [style = bold]
"ms_drbd_confirmed-post_notify_promoted_0" -> "group_start_0" [style = bold]
"ms_drbd_confirmed-post_notify_promoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_confirmed-pre_notify_demote_0" -> "ms_drbd_demote_0" [style = bold]
"ms_drbd_confirmed-pre_notify_demote_0" -> "ms_drbd_post_notify_demoted_0" [style = bold]
"ms_drbd_confirmed-pre_notify_demote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_confirmed-pre_notify_promote_0" -> "ms_drbd_post_notify_promoted_0" [style = bold]
"ms_drbd_confirmed-pre_notify_promote_0" -> "ms_drbd_promote_0" [style = bold]
"ms_drbd_confirmed-pre_notify_promote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_demote_0" -> "drbd0:0_demote_0 frigg" [style = bold]
"ms_drbd_demote_0" -> "ms_drbd_demoted_0" [style = bold]
"ms_drbd_demote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_demoted_0" -> "ms_drbd_post_notify_demoted_0" [style = bold]
"ms_drbd_demoted_0" -> "ms_drbd_promote_0" [style = bold]
"ms_drbd_demoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_post_notify_demoted_0" -> "drbd0:0_post_notify_demote_0 frigg" [style = bold]
"ms_drbd_post_notify_demoted_0" -> "drbd0:1_post_notify_demote_0 odin" [style = bold]
"ms_drbd_post_notify_demoted_0" -> "ms_drbd_confirmed-post_notify_demoted_0" [style = bold]
"ms_drbd_post_notify_demoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_post_notify_promoted_0" -> "drbd0:0_post_notify_promote_0 frigg" [style = bold]
"ms_drbd_post_notify_promoted_0" -> "drbd0:1_post_notify_promote_0 odin" [style = bold]
"ms_drbd_post_notify_promoted_0" -> "ms_drbd_confirmed-post_notify_promoted_0" [style = bold]
"ms_drbd_post_notify_promoted_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_pre_notify_demote_0" -> "drbd0:0_pre_notify_demote_0 frigg" [style = bold]
"ms_drbd_pre_notify_demote_0" -> "drbd0:1_pre_notify_demote_0 odin" [style = bold]
"ms_drbd_pre_notify_demote_0" -> "ms_drbd_confirmed-pre_notify_demote_0" [style = bold]
"ms_drbd_pre_notify_demote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_pre_notify_promote_0" -> "drbd0:0_pre_notify_promote_0 frigg" [style = bold]
"ms_drbd_pre_notify_promote_0" -> "drbd0:1_pre_notify_promote_0 odin" [style = bold]
"ms_drbd_pre_notify_promote_0" -> "ms_drbd_confirmed-pre_notify_promote_0" [style = bold]
"ms_drbd_pre_notify_promote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_promote_0" -> "drbd0:1_promote_0 odin" [style = bold]
"ms_drbd_promote_0" [style=bold color="green" fontcolor="orange"]
"ms_drbd_promoted_0" -> "group_start_0" [style = bold]
"ms_drbd_promoted_0" -> "ms_drbd_post_notify_promoted_0" [style = bold]
"ms_drbd_promoted_0" [style=bold color="green" fontcolor="orange"]
}

OEBPS/Common_Content/images/23.png

OEBPS/images/pcmk-active-passive.png

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/images/pcmk-internals-large.png

OEBPS/Common_Content/images/1.png

OEBPS/images/Policy-Engine-big-large.png

OEBPS/images/two-sets.png

OEBPS/images/pcmk-internals-small.png

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/25.png

OEBPS/Common_Content/images/38.png

OEBPS/images/pcmk-internals.png

OEBPS/Common_Content/images/8.png

