
Pacemaker Explained
Release 3.0.0

the Pacemaker project contributors

Jan 09, 2025





CONTENTS

1 Abstract 3

2 Table of Contents 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Scope of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 What Is Pacemaker? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Host-Local Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Configuration Value Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Local Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Cluster-Wide Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Configuration Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Option Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 CIB Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Cluster Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Cluster nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Pacemaker Remote nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Defining a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Quorum-only Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.5 Node Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.6 Tracking Node Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.1 Resource Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Resource Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.3 Resource Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.4 Pacemaker Remote Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Resource Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.1 Operation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.2 Monitoring Resources for Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6.3 Custom Recurring Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.4 Setting Global Defaults for Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.5 When Implicit Operations Take a Long Time . . . . . . . . . . . . . . . . . . . . . . 50
2.6.6 Multiple Monitor Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.7 Disabling a Monitor Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6.8 Handling Resource Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.9 Reloading an Agent After a Definition Change . . . . . . . . . . . . . . . . . . . . . . 53
2.6.10 Migrating Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Resource Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7.1 Deciding Which Nodes a Resource Can Run On . . . . . . . . . . . . . . . . . . . . . 55
2.7.2 Specifying the Order in which Resources Should Start/Stop . . . . . . . . . . . . . . 58

i



2.7.3 Placing Resources Relative to other Resources . . . . . . . . . . . . . . . . . . . . . . 60
2.7.4 Resource Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.5 Ordering Sets of Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.7.6 Colocating Sets of Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.7.7 External Resource Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.8 Fencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.8.1 What Is Fencing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.8.2 Why Is Fencing Necessary? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.8.3 Fence Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.8.4 Fence Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.8.5 When a Fence Device Can Be Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.8.6 Limitations of Fencing Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.8.7 Special Meta-Attributes for Fencing Resources . . . . . . . . . . . . . . . . . . . . . . 72
2.8.8 Special Instance Attributes for Fencing Resources . . . . . . . . . . . . . . . . . . . . 72
2.8.9 Default Check Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.8.10 Unfencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8.11 Fencing and Quorum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8.12 Fencing Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8.13 Fence Devices Dependent on Other Resources . . . . . . . . . . . . . . . . . . . . . . 77
2.8.14 Configuring Fencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.8.15 Fencing Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.8.16 Remapping Reboots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.9 Collective Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.9.1 Groups - A Syntactic Shortcut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.9.2 Clones - Resources That Can Have Multiple Active Instances . . . . . . . . . . . . . 89
2.9.3 Bundles - Containerized Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.10 Utilization and Placement Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.10.1 Utilization attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.10.2 Placement Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.10.3 How Multiple Capacities Combine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.10.4 Order of Resource Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.10.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.11 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.11.1 Rule Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.11.2 Rule Conditions and Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.11.3 Date/Time Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.11.4 Node Attribute Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.11.5 Resource Type Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.11.6 Operation Type Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.11.7 Using Rules to Determine Resource Location . . . . . . . . . . . . . . . . . . . . . . 112
2.11.8 Using Rules to Define Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.12 Access Control Lists (ACLs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.12.1 ACL Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.12.2 ACL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.12.3 ACL Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.12.4 ACL Targets and Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.12.5 ACLs and Pacemaker Remote Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.12.6 ACL Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.12.7 ACL Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2.13 Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.13.1 Alert Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.13.2 Alert Recipients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2.13.3 Alert Meta-Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2.13.4 Alert Instance Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

ii



2.13.5 Alert Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.14 Reusing Parts of the Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2.14.1 Reusing Resource Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2.14.2 Reusing Rules, Options and Sets of Operations . . . . . . . . . . . . . . . . . . . . . 131
2.14.3 Tagging Configuration Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2.15 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.15.1 Node State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.15.2 Transient Node Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
2.15.3 Node History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

2.16 Multi-Site Clusters and Tickets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.16.1 Challenges for Multi-Site Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.16.2 Conceptual Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.16.3 Configuring Ticket Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2.16.4 Managing Multi-Site Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
2.16.5 For more information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

2.17 Sample Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.17.1 Empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.17.2 Simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.17.3 Advanced Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3 Index 147

Index 149

iii



iv



Pacemaker Explained, Release 3.0.0

Configuring Pacemaker Clusters

CONTENTS 1



Pacemaker Explained, Release 3.0.0

2 CONTENTS



CHAPTER

ONE

ABSTRACT

This document definitively explains Pacemaker’s features and capabilities, particularly the XML syntax used
in Pacemaker’s Cluster Information Base (CIB).

3



Pacemaker Explained, Release 3.0.0

4 Chapter 1. Abstract



CHAPTER

TWO

TABLE OF CONTENTS

2.1 Introduction

2.1.1 The Scope of this Document

This document is intended to be an exhaustive reference for configuring Pacemaker. To achieve this, it
focuses on the XML syntax used to configure the CIB.

For those that are allergic to XML, multiple higher-level front-ends (both command-line and GUI) are
available. These tools will not be covered in this document, though the concepts explained here should make
the functionality of these tools more easily understood.

Users may be interested in other parts of the Pacemaker documentation set, such as Clusters from Scratch, a
step-by-step guide to setting up an example cluster, and Pacemaker Administration, a guide to maintaining
a cluster.

2.1.2 What Is Pacemaker?

Pacemaker is a high-availability cluster resource manager – software that runs on a set of hosts (a cluster of
nodes) in order to preserve integrity and minimize downtime of desired services (resources).1 It is maintained
by the ClusterLabs community.

Pacemaker’s key features include:

• Detection of and recovery from node- and service-level failures

• Ability to ensure data integrity by fencing faulty nodes

• Support for one or more nodes per cluster

• Support for multiple resource interface standards (anything that can be scripted can be clustered)

• Support (but no requirement) for shared storage

• Support for practically any redundancy configuration (active/passive, N+1, etc.)

• Automatically replicated configuration that can be updated from any node

• Ability to specify cluster-wide relationships between services, such as ordering, colocation, and anti-
colocation

• Support for advanced service types, such as clones (services that need to be active on multiple nodes),
promotable clones (clones that can run in one of two roles), and containerized services

1 Cluster is sometimes used in other contexts to refer to hosts grouped together for other purposes, such as high-performance
computing (HPC), but Pacemaker is not intended for those purposes.

5

https://www.clusterlabs.org/pacemaker/doc/
https://www.ClusterLabs.org/


Pacemaker Explained, Release 3.0.0

• Unified, scriptable cluster management tools

Note: Fencing

Fencing, also known as STONITH (an acronym for Shoot The Other Node In The Head), is the ability to
ensure that it is not possible for a node to be running a service. This is accomplished via fence devices
such as intelligent power switches that cut power to the target, or intelligent network switches that cut the
target’s access to the local network.

Pacemaker represents fence devices as a special class of resource.

A cluster cannot safely recover from certain failure conditions, such as an unresponsive node, without fencing.

Cluster Architecture

At a high level, a cluster can be viewed as having these parts (which together are often referred to as the
cluster stack):

• Resources: These are the reason for the cluster’s being – the services that need to be kept highly
available.

• Resource agents: These are scripts or operating system components that start, stop, and monitor
resources, given a set of resource parameters. These provide a uniform interface between Pacemaker
and the managed services.

• Fence agents: These are scripts that execute node fencing actions, given a target and fence device
parameters.

• Cluster membership layer: This component provides reliable messaging, membership, and quorum
information about the cluster. Currently, Pacemaker supports Corosync as this layer.

• Cluster resource manager: Pacemaker provides the brain that processes and reacts to events that
occur in the cluster. These events may include nodes joining or leaving the cluster; resource events
caused by failures, maintenance, or scheduled activities; and other administrative actions. To achieve
the desired availability, Pacemaker may start and stop resources and fence nodes.

• Cluster tools: These provide an interface for users to interact with the cluster. Various command-line
and graphical (GUI) interfaces are available.

Most managed services are not, themselves, cluster-aware. However, many popular open-source cluster
filesystems make use of a common Distributed Lock Manager (DLM), which makes direct use of Corosync
for its messaging and membership capabilities and Pacemaker for the ability to fence nodes.

Pacemaker Architecture

Pacemaker itself is composed of multiple daemons that work together:

• pacemakerd

• pacemaker-attrd

• pacemaker-based

• pacemaker-controld

• pacemaker-execd

• pacemaker-fenced

• pacemaker-schedulerd

6 Chapter 2. Table of Contents

http://www.corosync.org/


Pacemaker Explained, Release 3.0.0

Pacemaker’s main process (pacemakerd) spawns all the other daemons, and respawns them if they unex-
pectedly exit.

The Cluster Information Base (CIB) is an XML representation of the cluster’s configuration and the state
of all nodes and resources. The CIB manager (pacemaker-based) keeps the CIB synchronized across the
cluster, and handles requests to modify it.

The attribute manager (pacemaker-attrd) maintains a database of attributes for all nodes, keeps it syn-
chronized across the cluster, and handles requests to modify them. These attributes are usually recorded in
the CIB.

Given a snapshot of the CIB as input, the scheduler (pacemaker-schedulerd) determines what actions are
necessary to achieve the desired state of the cluster.

The local executor (pacemaker-execd) handles requests to execute resource agents on the local cluster node,
and returns the result.

The fencer (pacemaker-fenced) handles requests to fence nodes. Given a target node, the fencer decides
which cluster node(s) should execute which fencing device(s), and calls the necessary fencing agents (either
directly, or via requests to the fencer peers on other nodes), and returns the result.

The controller (pacemaker-controld) is Pacemaker’s coordinator, maintaining a consistent view of the
cluster membership and orchestrating all the other components.

Pacemaker centralizes cluster decision-making by electing one of the controller instances as the Designated
Controller (DC). Should the elected DC process (or the node it is on) fail, a new one is quickly established.
The DC responds to cluster events by taking a current snapshot of the CIB, feeding it to the scheduler, then

2.1. Introduction 7

https://en.wikipedia.org/wiki/XML


Pacemaker Explained, Release 3.0.0

asking the executors (either directly on the local node, or via requests to controller peers on other nodes)
and the fencer to execute any necessary actions.

Node Redundancy Designs

Pacemaker supports practically any node redundancy configuration including Active/Active, Active/Passive,
N+1, N+M, N-to-1, and N-to-N.

Active/passive clusters with two (or more) nodes using Pacemaker and DRBD are a cost-effective high-
availability solution for many situations. One of the nodes provides the desired services, and if it fails, the
other node takes over.

Pacemaker also supports multiple nodes in a shared-failover design, reducing hardware costs by allowing
several active/passive clusters to be combined and share a common backup node.

8 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
https://en.wikipedia.org/wiki/Distributed_Replicated_Block_Device


Pacemaker Explained, Release 3.0.0

When shared storage is available, every node can potentially be used for failover. Pacemaker can even run
multiple copies of services to spread out the workload. This is sometimes called N-to-N redundancy.

2.1. Introduction 9



Pacemaker Explained, Release 3.0.0

2.2 Host-Local Configuration

Note: Directory and file paths below may differ on your system depending on your Pacemaker build
settings. Check your Pacemaker configuration file to find the correct paths.

2.2.1 Configuration Value Types

Throughout this document, configuration values will be designated as having one of the following types:

Table 1: Configuration Value Types
Type Description
boolean Case-insensitive text value where 1, yes, y, on, and true evaluate as true and

0, no, n, off, false, and unset evaluate as false
date/time Textual timestamp like Sat Dec 21 11:47:45 2013
duration A nonnegative time duration, specified either like a timeout or an ISO 8601

duration. A duration may be up to approximately 49 days but is intended for
much smaller time periods.

Continued on next page

10 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601#Durations


Pacemaker Explained, Release 3.0.0

Table 1 – continued from previous page
Type Description
enumeration Text that must be one of a set of defined values (which will be listed in the

description)
epoch_time Time as the integer number of seconds since the Unix epoch, 1970-01-01

00:00:00 +0000 (UTC).
id A text string starting with a letter or underbar, followed by any combination

of letters, numbers, dashes, dots, and/or underbars; when used for a property
named id, the string must be unique across all id properties in the CIB

integer 32-bit signed integer value (-2,147,483,648 to 2,147,483,647)
ISO 8601 An ISO 8601 date/time.
nonnegative integer 32-bit nonnegative integer value (0 to 2,147,483,647)
percentage Floating-point number followed by an optional percent sign (‘%’)
port Integer TCP port number (0 to 65535)
range A range may be a single nonnegative integer or a dash-separated range of

nonnegative integers. Either the first or last value may be omitted to leave the
range open-ended. Examples: 0, 3-, -5, 4-6.

score A Pacemaker score can be an integer between -1,000,000 and 1,000,000, or a
string alias: INFINITY or +INFINITY is equivalent to 1,000,000, -INFINITY is
equivalent to -1,000,000, and red, yellow, and green are equivalent to integers
as described in Tracking Node Health.

text A text string
timeout A time duration, specified as a bare number (in which case it is considered

to be in seconds) or a number with a unit (ms or msec for milliseconds, us or
usec for microseconds, s or sec for seconds, m or min for minutes, h or hr for
hours) optionally with whitespace before and/or after the number.

version Version number (any combination of alphanumeric characters, dots, and
dashes, starting with a number).

Scores

Scores are integral to how Pacemaker works. Practically everything from moving a resource to deciding
which resource to stop in a degraded cluster is achieved by manipulating scores in some way.

Scores are calculated per resource and node. Any node with a negative score for a resource can’t run that
resource. The cluster places a resource on the node with the highest score for it.

Score addition and subtraction follow these rules:

• Any value (including INFINITY) - INFINITY = -INFINITY

• INFINITY + any value other than -INFINITY = INFINITY

Note: What if you want to use a score higher than 1,000,000? Typically this possibility arises when
someone wants to base the score on some external metric that might go above 1,000,000.

The short answer is you can’t.

The long answer is it is sometimes possible work around this limitation creatively. You may be able to set the
score to some computed value based on the external metric rather than use the metric directly. For nodes,
you can store the metric as a node attribute, and query the attribute when computing the score (possibly
as part of a custom resource agent).

2.2. Host-Local Configuration 11

https://en.wikipedia.org/wiki/ISO_8601


Pacemaker Explained, Release 3.0.0

2.2.2 Local Options

Most Pacemaker configuration is in the cluster-wide CIB, but some host-local configuration options either
are needed at startup (before the CIB is read) or provide per-host overrides of cluster-wide options.

These options are configured as environment variables set when Pacemaker is started, in the format
<NAME>="<VALUE>". These are typically set in a file whose location varies by OS (most commonly /etc/
sysconfig/pacemaker or /etc/default/pacemaker; this documentation was generated on a system using
/etc/sysconfig/pacemaker).

Table 2: Local Options
Name Type Default Description

CIB_pam_service
text login PAM service to use for remote CIB client au-

thentication (passed to pam_start).

PCMK_logfacility
enumeration daemon Enable logging via the system log or journal,

using the specified log facility. Messages sent
here are of value to all Pacemaker administra-
tors. This can be disabled using none, but that
is not recommended. Allowed values:

• none
• daemon
• user
• local0
• local1
• local2
• local3
• local4
• local5
• local6
• local7

PCMK_logpriority
enumeration notice Unless system logging is disabled using

PCMK_logfacility=none, messages of the
specified log severity and higher will be sent
to the system log. The default is appropriate
for most installations. Allowed values:

• emerg
• alert
• crit
• error
• warning
• notice
• info
• debug

Continued on next page

12 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 2 – continued from previous page
Name Type Default Description
PCMK_logfile text /var/log/pacemaker/pacemaker.logUnless set to none, more detailed log messages

will be sent to the specified file (in addition to
the system log, if enabled). These messages
may have extended information, and will in-
clude messages of info severity. This log is of
more use to developers and advanced system
administrators, and when reporting problems.
Note: The default is /var/log/pcmk-init.
log (inside the container) for bundled con-
tainer nodes; this would typically be mapped
to a different path on the host running the
container.

PCMK_logfile_mode
text 0660 Pacemaker will set the permissions on the de-

tail log to this value (see chmod(1)).
PCMK_debug enumeration no Whether to send debug severity messages to

the detail log. This may be set for all subsys-
tems (yes or no) or for specific (comma- sepa-
rated) subsystems. Allowed subsystems are:

• pacemakerd
• pacemaker-attrd
• pacemaker-based
• pacemaker-controld
• pacemaker-execd
• pacemaker-fenced
• pacemaker-schedulerd

Example: PCMK_debug="pacemakerd,
pacemaker-execd"

PCMK_stderr boolean no Advanced Use Only: Whether to send daemon
log messages to stderr. This would be use-
ful only during troubleshooting, when starting
Pacemaker manually on the command line.
Setting this option in the configuration file is
pointless, since the file is not read when start-
ing Pacemaker manually. However, it can be
set directly as an environment variable on the
command line.

PCMK_trace_functions
text Advanced Use Only: Send debug and

trace severity messages from these (comma-
separated) source code functions to the detail
log.
Example: PCMK_trace_functions="func1,
func2"

PCMK_trace_files
text Advanced Use Only: Send debug and trace

severity messages from all functions in these
(comma-separated) source file names to the de-
tail log.
Example: PCMK_trace_files="file1.c,
file2.c"

Continued on next page

2.2. Host-Local Configuration 13



Pacemaker Explained, Release 3.0.0

Table 2 – continued from previous page
Name Type Default Description

PCMK_trace_formats
text Advanced Use Only: Send trace severity mes-

sages that are generated by these (comma-
separated) format strings in the source code
to the detail log.
Example: PCMK_trace_formats="Error: %s
(%d)"

PCMK_trace_tags
text Advanced Use Only: Send debug and trace

severity messages related to these (comma-
separated) resource IDs to the detail log.
Example: PCMK_trace_tags="client-ip,
dbfs"

PCMK_blackbox
enumeration no Advanced Use Only: Enable blackbox logging

globally (yes or no) or by subsystem. A black-
box contains a rolling buffer of all logs (of all
severities). Blackboxes are stored under /var/
lib/pacemaker/blackbox by default, by de-
fault, and their contents can be viewed using
the qb-blackbox(8) command.
The blackbox recorder can be enabled at start
using this variable, or at runtime by send-
ing a Pacemaker subsystem daemon process a
SIGUSR1 or SIGTRAP signal, and disabled by
sending SIGUSR2 (see kill(1)). The blackbox
will be written after a crash, assertion failure,
or SIGTRAP signal.
See PCMK_debug for allowed subsystems.
Example: PCMK_blackbox="pacemakerd,
pacemaker-execd"

PCMK_trace_blackbox
enumeration Advanced Use Only: Write a blackbox when-

ever the message at the specified function and
line is logged. Multiple entries may be comma-
separated.
Example: PCMK_trace_blackbox="remote.
c:144,remote.c:149"

PCMK_node_start_state
enumeration default By default, the local host will join the cluster

in an online or standby state when Pacemaker
first starts depending on whether it was previ-
ously put into standby mode. If this variable
is set to standby or online, it will force the
local host to join in the specified state.

PCMK_node_action_limit
nonnegative in-
teger

If set, this overrides the node-action-limit clus-
ter option on this node to specify the maxi-
mum number of jobs that can be scheduled on
this node (or 0 to use twice the number of CPU
cores).

PCMK_fail_fast
boolean no By default, if a Pacemaker subsystem crashes,

the main pacemakerd process will attempt
to restart it. If this variable is set to yes,
pacemakerd will panic the local host instead.

Continued on next page

14 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 2 – continued from previous page
Name Type Default Description

PCMK_panic_action
enumeration reboot Pacemaker will panic the local host under cer-

tain conditions. By default, this means re-
booting the host. This variable can change
that behavior: if crash, trigger a kernel crash
(useful if you want a kernel dump to inves-
tigate); if sync-reboot or sync-crash, syn-
chronize filesystems before rebooting the host
or triggering a kernel crash. The sync values
are more likely to preserve log messages, but
with the risk that the host may be left active
if the synchronization hangs.

PCMK_remote_address
text By default, if the Pacemaker Remote service is

run on the local node, it will listen for con-
nections on all IP addresses. This may be
set to one address to listen on instead, as a
resolvable hostname or as a numeric IPv4 or
IPv6 address. When resolving names or lis-
tening on all addresses, IPv6 will be preferred
if available. When listening on an IPv6 ad-
dress, IPv4 clients will be supported via IPv4-
mapped IPv6 addresses.
Example: PCMK_remote_address="192.0.2.
1"

PCMK_remote_port
port 3121 Use this TCP port number for Pacemaker Re-

mote node connections. This value must be
the same on all nodes.

PCMK_ca_file text The location of a file containing trusted Cer-
tificate Authorities, used to verify client or
server certificates. This file must be in PEM
format and must be readable by Pacemaker
daemons (that is, it must allow read per-
missions to either the hacluster user or
the haclient group). If set, along with
PCMK_key_file and PCMK_cert_file, X509
authentication will be enabled for Pacemaker
Remote and remote CIB connections.
Example: PCMK_ca_file="/etc/pacemaker/
ca.cert.pem"

PCMK_cert_file
text The location of a file containing the signed

certificate for the server side of the connec-
tion. This file must be in PEM format
and must be readable by Pacemaker daemons
(that is, it must allow read permissions to
either the hacluster user or the haclient
group). If set, along with PCMK_ca_file and
PCMK_key_file, X509 authentication will be
enabled for Pacemaker Remote and remote
CIB connections.
Example: PCMK_cert_file="/etc/
pacemaker/server.cert.pem"

Continued on next page

2.2. Host-Local Configuration 15



Pacemaker Explained, Release 3.0.0

Table 2 – continued from previous page
Name Type Default Description
PCMK_crl_file text The location of a Certificate Revocation List

file, in PEM format. This setting is optional
for X509 authentication.
Example: PCMK_cr1_file="/etc/
pacemaker/crl.pem"

PCMK_key_file
text The location of a file containing the private key

for the matching PCMK_cert_file, in PEM
format. This file must be readble by Pace-
maker daemons (that is, it must allow read
permissions to either the hacluster user or
the haclient group). If set, along with
PCMK_ca_file and PCMK_cert_file, X509
authentication will be enabled for Pacemaker
Remote and remote CIB connections.
Example: PCMK_key_file="/etc/
pacemaker/server.key.pem"

PCMK_authkey_location
text /etc/pacemaker/authkeyAs an alternative to using X509 authentication

for Pacemaker Remote connections, use the
contents of this file as the authorization key.
This file must be readable by Pacemaker dae-
mons (that is, it must allow read permissions
to either the hacluster user or the haclient
group), and its contents must be identical on
all nodes.
This is an alternative to using X509 certifi-
cates.

Continued on next page

16 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 2 – continued from previous page
Name Type Default Description

PCMK_remote_pid1
enumeration default Advanced Use Only: When a bundle resource’s

run-command option is left to default, Pace-
maker Remote runs as PID 1 in the bundle’s
containers. When it does so, it loads envi-
ronment variables from the container’s /etc/
pacemaker/pcmk-init.env and performs the
PID 1 responsibility of reaping dead subpro-
cesses.
This option controls whether those actions
are performed when Pacemaker Remote is not
running as PID 1. It is intended primarily
for developer testing but can be useful when
run-command is set to a separate, custom PID
1 process that launches Pacemaker Remote.

• full: Pacemaker Remote loads environ-
ment variables from /etc/pacemaker/
pcmk-init.env and reaps dead subpro-
cesses.

• vars: Pacemaker Remote loads environ-
ment variables from /etc/pacemaker/
pcmk-init.env but does not reap dead
subprocesses.

• default: Pacemaker Remote performs
neither action.

If Pacemaker Remote is running as PID 1, this
option is ignored, and the behavior is the same
as for full.

PCMK_tls_priorities
text NORMAL Advanced Use Only: These GnuTLS cipher

priorities will be used for TLS connections
(whether for Pacemaker Remote connections
or remote CIB access, when enabled).
Pacemaker will append ":+ANON-DH" for re-
mote CIB access and ":+DHE-PSK:+PSK" for
Pacemaker Remote connections, as they are
required for the respective functionality.
Example: PCMK_tls_priorities="SECURE128:+SECURE192"

PCMK_dh_max_bits
nonnegative in-
teger

0 (no maximum) Advanced Use Only: Set an upper bound on
the bit length of the prime number generated
for Diffie-Hellman parameters needed by TLS
connections. The default is no maximum.
The server (Pacemaker Remote daemon, or
CIB manager configured to accept remote
clients) will use this value to provide a ceiling
for the value recommended by the GnuTLS li-
brary. The library will only accept a limited
number of specific values, which vary by li-
brary version, so setting these is recommended
only when required for compatibility with spe-
cific client versions.
Clients do not use PCMK_dh_max_bits.

Continued on next page

2.2. Host-Local Configuration 17

https://gnutls.org/manual/html_node/Priority-Strings.html
https://gnutls.org/manual/html_node/Priority-Strings.html


Pacemaker Explained, Release 3.0.0

Table 2 – continued from previous page
Name Type Default Description

PCMK_ipc_type
enumeration shared-mem Advanced Use Only: Force use of a particular

IPC method. Allowed values:
• shared-mem
• socket
• posix
• sysv

PCMK_ipc_buffer
nonnegative in-
teger

131072 Advanced Use Only: Specify an IPC buffer size
in bytes. This can be useful when connecting
to large clusters that result in messages ex-
ceeding the default size (which will also result
in log messages referencing this variable).

PCMK_cluster_type
enumeration corosync Advanced Use Only: Specify the cluster layer

to be used. If unset, Pacemaker will detect
and use a supported cluster layer, if available.
Currently, "corosync" is the only supported
cluster layer. If multiple layers are supported
in the future, this will allow overriding Pace-
maker’s automatic detection to select a specific
one.

PCMK_schema_directory
text /usr/share/pacemakerAdvanced Use Only: Specify an alternate loca-

tion for RNG schemas and XSL transforms.

PCMK_remote_schema_directory
text /var/lib/pacemaker/schemasAdvanced Use Only: Specify an alternate lo-

cation on Pacemaker Remote nodes for stor-
ing newer RNG schemas and XSL transforms
fetched from the cluster.

PCMK_valgrind_enabled
enumeration no Advanced Use Only: Whether subsystem dae-

mons should be run under valgrind. Allowed
values are the same as for PCMK_debug.

PCMK_callgrind_enabled
enumeration no Advanced Use Only: Whether subsystem dae-

mons should be run under valgrind with the
callgrind tool enabled. Allowed values are
the same as for PCMK_debug.

SBD_SYNC_RESOURCE_STARTUP
boolean If true, pacemakerd waits for a ping from

sbd during startup before starting other Pace-
maker daemons, and during shutdown af-
ter stopping other Pacemaker daemons but
before exiting. Default value is set based
on the --with-sbd-sync-default configure
script option.

SBD_WATCHDOG_TIMEOUT
duration If the stonith-watchdog-timeout cluster

property is set to a negative or invalid value,
use double this value as the default if posi-
tive, or use 0 as the default otherwise. This
value must be greater than the value of
stonith-watchdog-timeout if both are set.

Continued on next page

18 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 2 – continued from previous page
Name Type Default Description

VAL-
GRIND_OPTS

text Advanced Use Only: Pass these options to
valgrind, when enabled (see valgrind(1)).
"--vgdb=no" should usually be specified be-
cause pacemaker-execd can lower privileges
when executing commands, which would oth-
erwise leave a bunch of unremovable files in
/tmp.

2.3 Cluster-Wide Configuration

2.3.1 Configuration Layout

The cluster is defined by the Cluster Information Base (CIB), which uses XML notation. The simplest CIB,
an empty one, looks like this:

An empty configuration

<cib crm_feature_set="3.6.0" validate-with="pacemaker-3.5" epoch="1" num_updates="0" admin_epoch=
↪→"0">
<configuration>
<crm_config/>
<nodes/>
<resources/>
<constraints/>

</configuration>
<status/>

</cib>

The empty configuration above contains the major sections that make up a CIB:

• cib: The entire CIB is enclosed with a cib element. Certain fundamental settings are defined as
attributes of this element.

– configuration: This section – the primary focus of this document – contains traditional config-
uration information such as what resources the cluster serves and the relationships among them.

∗ crm_config: cluster-wide configuration options

∗ nodes: the machines that host the cluster

∗ resources: the services run by the cluster

∗ constraints: indications of how resources should be placed

– status: This section contains the history of each resource on each node. Based on this data,
the cluster can construct the complete current state of the cluster. The authoritative source for
this section is the local executor (pacemaker-execd process) on each cluster node, and the cluster
will occasionally repopulate the entire section. For this reason, it is never written to disk, and
administrators are advised against modifying it in any way.

In this document, configuration settings will be described as properties or options based on how they are
defined in the CIB:

• Properties are XML attributes of an XML element.

2.3. Cluster-Wide Configuration 19



Pacemaker Explained, Release 3.0.0

• Options are name-value pairs expressed as nvpair child elements of an XML element.

Normally, you will use command-line tools that abstract the XML, so the distinction will be unimportant;
both properties and options are cluster settings you can tweak.

Options can appear within four types of enclosing elements:

• cluster_property_set

• instance_attributes

• meta_attributes

• utilization

We will refer to a set of options and its enclosing element as a block.

Table 3: Properties of an Option Block’s Enclosing Element
Name Type Default Description
id id A unique name for the block (required)
score score 0 Priority with which to process the block

Each block may optionally contain a rule.

2.3.2 Option Precedence

This subsection describes the precedence of options within a set of blocks and within a single block.

Options are processed as follows:

• All option blocks of a given type are processed in order of their score attribute, from high-
est to lowest. For cluster_property_set, if there is a block whose enclosing element has
id="cib-bootstrap-options", then that block is always processed first regardless of score.

• If a block contains a rule that evaluates to false, that block is skipped.

• Within a block, options are processed in order from first to last.

• The first value found for a given option is applied, and the rest are ignored.

Note that this means it is pointless to configure the same option twice in a single block, because occurrences
after the first one would be ignored.

For example, in the following configuration snippet, the no-quorum-policy value demote is applied.
property-set2 has a higher score than property-set1, so it’s processed first. There are no rules in this
snippet, so both sets are processed. Within property-set2, the value demote appears first, so the later
value freeze is ignored. We’ve already found a value for no-quorum-policy before we begin processing
property-set1, so its value stop is ignored.

<cluster_property_set id="property-set1" score="500">
<nvpair id="no-quorum-policy1" name="no-quorum-policy" value="stop"/>

</cluster_property_set>
<cluster_property_set id="property-set2" score="1000">
<nvpair id="no-quorum-policy2a" name="no-quorum-policy" value="demote"/>
<nvpair id="no-quorum-policy2b" name="no-quorum-policy" value="freeze"/>

</cluster_property_set>

20 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

2.3.3 CIB Properties

Certain settings are defined by CIB properties (that is, attributes of the cib tag) rather than with the rest
of the cluster configuration in the configuration section.

The reason is simply a matter of parsing. These options are used by the configuration database which is, by
design, mostly ignorant of the content it holds. So the decision was made to place them in an easy-to-find
location.

Table 4: CIB Properties
Name Type Default Description
admin_epoch nonnegative in-

teger
0 When a node joins the cluster, the cluster

asks the node with the highest (admin_epoch,
epoch, num_updates) tuple to replace the
configuration on all the nodes – which
makes setting them correctly very important.
admin_epoch is never modified by the cluster;
you can use this to make the configurations on
any inactive nodes obsolete.

epoch nonnegative in-
teger

0 The cluster increments this every time the
CIB’s configuration section is updated.

num_updates nonnegative in-
teger

0 The cluster increments this every time the
CIB’s configuration or status sections are up-
dated, and resets it to 0 when epoch changes.

validate-with enumeration Determines the type of XML validation that
will be done on the configuration. Allowed
values are none (in which case the cluster will
not require that updates conform to expected
syntax) and the base names of schema files
installed on the local machine (for example,
“pacemaker-3.9”)

remote-tls-port port If set, the CIB manager will listen for anony-
mously encrypted remote connections on this
port, to allow CIB administration from hosts
not in the cluster. No key is used, so this
should be used only on a protected net-
work where man-in-the-middle attacks can be
avoided.

remote-clear-
port

port If set to a TCP port number, the CIB manager
will listen for remote connections on this port,
to allow for CIB administration from hosts not
in the cluster. No encryption is used, so this
should be used only on a protected network.

cib-last-written date/time Indicates when the configuration was last writ-
ten to disk. Maintained by the cluster; for in-
formational purposes only.

have-quorum boolean Indicates whether the cluster has quorum. If
false, the cluster’s response is determined by
no-quorum-policy (see below). Maintained
by the cluster.

dc-uuid text Node ID of the cluster’s current designated
controller (DC). Used and maintained by the
cluster.

Continued on next page

2.3. Cluster-Wide Configuration 21



Pacemaker Explained, Release 3.0.0

Table 4 – continued from previous page
Name Type Default Description
execution-date epoch time Time to use when evaluating rules.

2.3.4 Cluster Options

Cluster options, as you might expect, control how the cluster behaves when confronted with various situa-
tions.

They are grouped into sets within the crm_config section. In advanced configurations, there may be more
than one set. (This will be described later in the chapter on Rules where we will show how to have the
cluster use different sets of options during working hours than during weekends.) For now, we will describe
the simple case where each option is present at most once.

You can obtain an up-to-date list of cluster options, including their default values, by running the man
pacemaker-schedulerd and man pacemaker-controld commands.

Table 5: Cluster Options
Name Type Default Description
cluster-name text An (optional) name for the cluster as a whole.

This is mostly for users’ convenience for use as
desired in administration, but can be used in
the Pacemaker configuration in Rules (as the
#cluster-name node attribute). It may also
be used by higher-level tools when displaying
cluster information, and by certain resource
agents (for example, the ocf:heartbeat:GFS2
agent stores the cluster name in filesystem
meta-data).

dc-version version detected Version of Pacemaker on the cluster’s desig-
nated controller (DC). Maintained by the clus-
ter, and intended for diagnostic purposes.

cluster-
infrastructure

text detected The messaging layer with which Pacemaker is
currently running. Maintained by the cluster,
and intended for informational and diagnostic
purposes.

Continued on next page

22 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 5 – continued from previous page
Name Type Default Description

no-quorum-
policy

enumeration stop What to do when the cluster does not have
quorum. Allowed values:

• ignore: continue all resource manage-
ment

• freeze: continue resource management,
but don’t recover resources from nodes
not in the affected partition

• stop: stop all resources in the affected
cluster partition

• demote: demote promotable resources
and stop all other resources in the af-
fected cluster partition (since 2.0.5)

• fence: fence all nodes in the affected
cluster partition (since 2.1.9)

• suicide: same as fence (deprecated
since 2.1.9)

batch-limit integer 0 The maximum number of actions that the clus-
ter may execute in parallel across all nodes.
The ideal value will depend on the speed and
load of your network and cluster nodes. If zero,
the cluster will impose a dynamically calcu-
lated limit only when any node has high load.
If -1, the cluster will not impose any limit.

migration-limit integer -1 The number of live migration actions that the
cluster is allowed to execute in parallel on a
node. A value of -1 means unlimited.

load-threshold percentage 80% Maximum amount of system load that should
be used by cluster nodes. The cluster will slow
down its recovery process when the amount
of system resources used (currently CPU) ap-
proaches this limit.

node-action-
limit

integer 0 Maximum number of jobs that can be sched-
uled per node. If nonpositive or invalid,
double the number of cores is used as
the maximum number of jobs per node.
PCMK_node_action_limit overrides this op-
tion on a per-node basis.

symmetric-
cluster

boolean true If true, resources can run on any node by de-
fault. If false, a resource is allowed to run on
a node only if a location constraint enables it.

stop-all-
resources

boolean false Whether all resources should be disallowed
from running (can be useful during mainte-
nance or troubleshooting)

stop-orphan-
resources

boolean true Whether resources that have been deleted from
the configuration should be stopped. This
value takes precedence over is-managed (that
is, even unmanaged resources will be stopped
when orphaned if this value is true).

Continued on next page

2.3. Cluster-Wide Configuration 23



Pacemaker Explained, Release 3.0.0

Table 5 – continued from previous page
Name Type Default Description

stop-orphan-
actions

boolean true Whether recurring operations that have been
deleted from the configuration should be can-
celled

start-failure-is-
fatal

boolean true Whether a failure to start a resource on a par-
ticular node prevents further start attempts
on that node. If false, the cluster will de-
cide whether the node is still eligible based
on the resource’s current failure count and
migration-threshold.

enable-startup-
probes

boolean true Whether the cluster should check the pre-
existing state of resources when the cluster
starts

maintenance-
mode

boolean false If true, the cluster will not start or stop
any resource in the cluster, and any recurring
operations (expect those specifying role as
Stopped) will be paused. If true, this overrides
the maintenance node attribute, is-managed
and maintenance resource meta-attributes,
and enabled operation meta-attribute.

stonith-enabled boolean true Whether the cluster is allowed to fence nodes
(for example, failed nodes and nodes with re-
sources that can’t be stopped).
If true, at least one fence device must be con-
figured before resources are allowed to run.
If false, unresponsive nodes are immediately
assumed to be running no resources, and re-
source recovery on online nodes starts with-
out any further protection (which can mean
data loss if the unresponsive node still accesses
shared storage, for example). See also the re-
quires resource meta-attribute.
This option applies only to fencing sched-
uled by the cluster, not to requests initiated
externally (such as with the stonith_admin
command-line tool).

stonith-action enumeration reboot Action the cluster should send to the fence
agent when a node must be fenced. Allowed
values are reboot and off.

stonith-timeout duration 60s How long to wait for on, off, and reboot fence
actions to complete by default.

stonith-max-
attempts

score 10 How many times fencing can fail for a target
before the cluster will no longer immediately
re-attempt it. Any value below 1 will be ig-
nored, and the default will be used instead.

Continued on next page

24 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 5 – continued from previous page
Name Type Default Description
have-watchdog boolean detected Whether watchdog integration is enabled.

This is set automatically by the cluster accord-
ing to whether SBD is detected to be in use.
User-configured values are ignored. The value
true is meaningful if diskless SBD is used and
stonith-watchdog-timeout is nonzero. In that
case, if fencing is required, watchdog-based
self-fencing will be performed via SBD with-
out requiring a fencing resource explicitly con-
figured.

stonith-
watchdog-
timeout

timeout 0 If nonzero, and the cluster detects
have-watchdog as true, then watchdog-
based self-fencing will be performed via SBD
when fencing is required.
If this is set to a positive value, lost nodes
are assumed to achieve self-fencing within this
much time.
This does not require a fencing resource
to be explicitly configured, though a
fence_watchdog resource can be config-
ured, to limit use to specific nodes.
If this is set to 0 (the default), the cluster will
never assume watchdog-based self-fencing.
If this is set to a negative value, the clus-
ter will use twice the local value of the
SBD_WATCHDOG_TIMEOUT environment variable
if that is positive, or otherwise treat this as 0.
Warning: When used, this timeout must
be larger than SBD_WATCHDOG_TIMEOUT on all
nodes that use watchdog-based SBD, and
Pacemaker will refuse to start on any of those
nodes where this is not true for the local value
or SBD is not active. When this is set to a
negative value, SBD_WATCHDOG_TIMEOUT must
be set to the same value on all nodes that use
SBD, otherwise data corruption or loss could
occur.

concurrent-
fencing

boolean false Whether the cluster is allowed to initiate mul-
tiple fence actions concurrently. Fence ac-
tions initiated externally, such as via the
stonith_admin tool or an application such as
DLM, or by the fencer itself such as recurring
device monitors and status and list com-
mands, are not limited by this option.

Continued on next page

2.3. Cluster-Wide Configuration 25



Pacemaker Explained, Release 3.0.0

Table 5 – continued from previous page
Name Type Default Description
fence-reaction enumeration stop How should a cluster node react if notified of

its own fencing? A cluster node may receive
notification of a “succeeded” fencing that tar-
geted it if fencing is misconfigured, or if fab-
ric fencing is in use that doesn’t cut cluster
communication. Allowed values are stop to
attempt to immediately stop Pacemaker and
stay stopped, or panic to attempt to immedi-
ately reboot the local node, falling back to stop
on failure. The default is likely to be changed
to panic in a future release. (since 2.0.3)

priority-fencing-
delay

duration 0 Apply this delay to any fencing targeting the
lost nodes with the highest total resource pri-
ority in case we don’t have the majority of the
nodes in our cluster partition, so that the more
significant nodes potentially win any fencing
match (especially meaningful in a split-brain
of a 2-node cluster). A promoted resource in-
stance takes the resource’s priority plus 1 if the
resource’s priority is not 0. Any static or ran-
dom delays introduced by pcmk_delay_base
and pcmk_delay_max configured for the cor-
responding fencing resources will be added to
this delay. This delay should be significantly
greater than (safely twice) the maximum delay
from those parameters. (since 2.0.4)

node-pending-
timeout

duration 0 Fence nodes that do not join the controller pro-
cess group within this much time after joining
the cluster, to allow the cluster to continue
managing resources. A value of 0 means never
fence pending nodes. Setting the value to 2h
means fence nodes after 2 hours. (since 2.1.7)

cluster-delay duration 60s If the DC requires an action to be executed on
another node, it will consider the action failed
if it does not get a response from the other
node within this time (beyond the action’s own
timeout). The ideal value will depend on the
speed and load of your network and cluster
nodes.

dc-deadtime duration 20s How long to wait for a response from other
nodes when electing a DC. The ideal value will
depend on the speed and load of your network
and cluster nodes.

cluster-ipc-limit nonnegative in-
teger

500 The maximum IPC message backlog before
one cluster daemon will disconnect another.
This is of use in large clusters, for which a good
value is the number of resources in the cluster
multiplied by the number of nodes. The de-
fault of 500 is also the minimum. Raise this
if you see “Evicting client” log messages for
cluster daemon process IDs.

Continued on next page

26 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 5 – continued from previous page
Name Type Default Description
pe-error-series-

max
integer -1 The number of scheduler inputs resulting in

errors to save. These inputs can be helpful
during troubleshooting and when reporting is-
sues. A negative value means save all inputs,
and 0 means save none.

pe-warn-series-
max

integer 5000 The number of scheduler inputs resulting in
warnings to save. These inputs can be helpful
during troubleshooting and when reporting is-
sues. A negative value means save all inputs,
and 0 means save none.

pe-input-series-
max

integer 4000 The number of “normal” scheduler inputs to
save. These inputs can be helpful during trou-
bleshooting and when reporting issues. A neg-
ative value means save all inputs, and 0 means
save none.

enable-acl boolean false Whether access control lists should be used to
authorize CIB modifications

placement-
strategy

enumeration default How the cluster should assign resources
to nodes (see Utilization and Placement
Strategy). Allowed values are default,
utilization, balanced, and minimal.

node-health-
strategy

enumeration none How the cluster should react to node
health attributes. Allowed values are none,
migrate-on-red, only-green, progressive,
and custom.

node-health-
base

score 0 The base health score assigned to a node.
Only used when node-health-strategy is
progressive.

node-health-
green

score 0 The score to use for a node health at-
tribute whose value is green. Only used
when node-health-strategy is progressive
or custom.

node-health-
yellow

score 0 The score to use for a node health attribute
whose value is yellow. Only used when
node-health-strategy is progressive or
custom.

node-health-red score -INFINITY The score to use for a node health at-
tribute whose value is red. Only used when
node-health-strategy is progressive or
custom.

Continued on next page

2.3. Cluster-Wide Configuration 27



Pacemaker Explained, Release 3.0.0

Table 5 – continued from previous page
Name Type Default Description
cluster-recheck-

interval
duration 15min Pacemaker is primarily event-driven, and looks

ahead to know when to recheck the cluster
for failure-timeout settings and most time-
based rules (since 2.0.3). However, it will also
recheck the cluster after this amount of inac-
tivity. This has three main effects:

• Rules using date_spec are guaranteed to
be checked only this often.

• If fencing fails enough to reach stonith-
max-attempts, attempts will begin again
after at most this time.

• It serves as a fail-safe in case of cer-
tain scheduler bugs. If the scheduler
incorrectly determines only some of the
actions needed to react to a particular
event, it will often correctly determine
the rest after at most this time.

A value of 0 disables this polling.
shutdown-lock boolean false The default of false allows active resources

to be recovered elsewhere when their node is
cleanly shut down, which is what the vast
majority of users will want. However, some
users prefer to make resources highly avail-
able only for failures, with no recovery for
clean shutdowns. If this option is true, re-
sources active on a node when it is cleanly shut
down are kept “locked” to that node (not al-
lowed to run elsewhere) until they start again
on that node after it rejoins (or for at most
shutdown-lock-limit, if set). Stonith re-
sources and Pacemaker Remote connections
are never locked. Clone and bundle instances
and the promoted role of promotable clones
are currently never locked, though support
could be added in a future release. Locks
may be manually cleared using the --refresh
option of crm_resource (both the resource
and node must be specified; this works with
remote nodes if their connection resource’s
target-role is set to Stopped, but not if
Pacemaker Remote is stopped on the remote
node without disabling the connection re-
source). (since 2.0.4)

shutdown-lock-
limit

duration 0 If shutdown-lock is true, and this is set to
a nonzero time duration, locked resources will
be allowed to start after this much time has
passed since the node shutdown was initiated,
even if the node has not rejoined. (This works
with remote nodes only if their connection
resource’s target-role is set to Stopped.)
(since 2.0.4)

Continued on next page

28 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 5 – continued from previous page
Name Type Default Description
startup-fencing boolean true Advanced Use Only: Whether the cluster

should fence unseen nodes at start-up. Set-
ting this to false is unsafe, because the unseen
nodes could be active and running resources
but unreachable. dc-deadtime acts as a grace
period before this fencing, since a DC must be
elected to schedule fencing.

election-timeout duration 2min Advanced Use Only: If a winner is not declared
within this much time of starting an election,
the node that initiated the election will declare
itself the winner.

shutdown-
escalation

duration 20min Advanced Use Only: The controller will exit
immediately if a shutdown does not complete
within this much time.

join-integration-
timeout

duration 3min Advanced Use Only: If you need to adjust this
value, it probably indicates the presence of a
bug.

join-
finalization-
timeout

duration 30min Advanced Use Only: If you need to adjust this
value, it probably indicates the presence of a
bug.

transition-delay duration 0s Advanced Use Only: Delay cluster recovery for
the configured interval to allow for additional
or related events to occur. This can be useful
if your configuration is sensitive to the order
in which ping updates arrive. Enabling this
option will slow down cluster recovery under
all conditions.

2.4 Nodes

Pacemaker supports two basic types of nodes: cluster nodes and Pacemaker Remote nodes.

2.4.1 Cluster nodes

Cluster nodes run Corosync and all Pacemaker components. They may run cluster resources, run all Pace-
maker command-line tools, execute fencing actions, count toward cluster quorum, and serve as the cluster’s
Designated Controller (DC).

Every cluster must have at least one cluster node. Scalability is limited by the cluster layer to around 32
cluster nodes.

Host Clock Considerations

In general, Pacemaker does not rely on time or time zones being synchronized across nodes. However, if the
configuration uses date/time-based rules, synchronization is a good idea, otherwise the rules will evaluate
differently depending on which node is the Designated Controller (DC). Also, synchronization is greatly
helpful when comparing logs across multiple nodes for problem investigation.

2.4. Nodes 29



Pacemaker Explained, Release 3.0.0

If a node’s clock jumps forward, you may see relatively minor issues such as various timeouts suddenly being
considered expired.

If a node’s clock jumps backward, more serious problems may occur, so this should be avoided. If the host
clock is adjusted at boot, and Pacemaker is enabled at boot, Pacemaker’s start should be ordered after the
clock adjustment. When run under systemd, Pacemaker will automatically order itself after time-sync.
target. However, depending on the local setup, you may need to enable an additional service (for example,
chronyd-wait.service) for that to be effective, or write your own workaround (for example, see the dis-
cussion on systemd issue#5097.

2.4.2 Pacemaker Remote nodes

Pacemaker Remote nodes do not run Corosync or the usual Pacemaker components. Instead, they run
only the remote executor (pacemaker-remoted), which waits for Pacemaker on a cluster node to give it
instructions.

They may run cluster resources and most command-line tools, but cannot perform other functions of full
cluster nodes such as fencing execution, quorum voting, or DC eligibility.

There is no hard limit on the number of Pacemaker Remote nodes.

Note: Remote in this document has nothing to do with physical proximity and instead refers to the node
not being a member of the underlying Corosync cluster. Pacemaker Remote nodes are subject to the same
latency requirements as cluster nodes, which means they are typically in the same data center.

There are three types of Pacemaker Remote nodes:

• A remote node boots outside Pacemaker control, and is typically a physical host. The connection to
the remote node is managed as a special type of resource configured by the user.

• A guest node is a virtual machine or container configured to run Pacemaker’s remote executor when
launched, and is launched and managed by the cluster as a standard resource configured by the user
with special options.

• A bundle node is a guest node created for a container that is launched and managed by the cluster as
part of a bundle resource configured by the user.

Note: It is important to distinguish the various roles a virtual machine can serve in Pacemaker clusters:

• A virtual machine can run the full cluster stack, in which case it is a cluster node and is not itself
managed by the cluster.

• A virtual machine can be managed by the cluster as a simple resource, without the cluster having any
awareness of the services running within it. The virtual machine is opaque to the cluster.

• A virtual machine can be a guest node, allowing the cluster to manage both the virtual machine and
resources running within it. The virtual machine is transparent to the cluster.

2.4.3 Defining a Node

Each cluster node will have an entry in the nodes section containing at least an ID and a name. A cluster
node’s ID is defined by the cluster layer (Corosync).

30 Chapter 2. Table of Contents

https://github.com/systemd/systemd/issues/5097


Pacemaker Explained, Release 3.0.0

Example Corosync cluster node entry

<node id="101" uname="pcmk-1"/>

Pacemaker Remote nodes are defined by a resource in the resources section. Remote nodes and guest nodes
may optionally have an entry in the nodes section, primarily for permanent node attributes.

Normally, the user should let the cluster populate the nodes section automatically.

Where Pacemaker Gets the Node Name

The name that Pacemaker uses for a node in the configuration does not have to be the same as its local
hostname. Pacemaker uses the following for a cluster node’s name, in order of most preferred first:

• The value of name in the nodelist section of corosync.conf (nodeid must also be explicitly set there
in order for Pacemaker to associate the name with the node)

• The value of ring0_addr in the nodelist section of corosync.conf

• The local hostname (value of uname -n)

A Pacemaker Remote node’s name is defined in its resource configuration.

If the cluster is running, the crm_node -n command will display the local node’s name as used by the cluster.

If a Corosync nodelist is used, crm_node --name-for-id with a Corosync node ID will display the name
used by the node with the given Corosync nodeid, for example:

crm_node --name-for-id 2

2.4.4 Quorum-only Nodes

One popular cluster design uses an even number of cluster nodes (often 2), with an additional lightweight
host that contributes to providing quorum but cannot run resources.

With Pacemaker, this can be achieved in either of two ways:

• When Corosync is used as the underlying cluster layer, the lightweight host can run qdevice instead of
Corosync and Pacemaker.

• The lightweight host can be configured as a Pacemaker cluster node, and a location constraint can be
configured for the node with score set to -INFINITY, rsc-pattern set to .*, and resource-discovey
set to never.

2.4.5 Node Attributes

Pacemaker allows node-specific values to be specified using node attributes. A node attribute has a name,
and may have a distinct value for each node.

Node attributes come in two types, permanent and transient. Permanent node attributes are kept within
the node entry, and keep their values even if the cluster restarts on a node. Transient node attributes are
kept in the CIB’s status section, and go away when the cluster stops on the node.

While certain node attributes have specific meanings to the cluster, they are mainly intended to allow
administrators and resource agents to track any information desired.

2.4. Nodes 31

https://github.com/corosync/corosync-qdevice


Pacemaker Explained, Release 3.0.0

For example, an administrator might choose to define node attributes for how much RAM and disk space
each node has, which OS each uses, or which server room rack each node is in.

Users can configure Rules that use node attributes to affect where resources are placed.

Setting and querying node attributes

Node attributes can be set and queried using the crm_attribute and attrd_updater commands, so that
the user does not have to deal with XML configuration directly.

Here is an example command to set a permanent node attribute, and the XML configuration that would be
generated:

Result of using crm_attribute to specify which kernel pcmk-1 is running

# crm_attribute --type nodes --node pcmk-1 --name kernel --update $(uname -r)

<node id="1" uname="pcmk-1">
<instance_attributes id="nodes-1-attributes">

<nvpair id="nodes-1-kernel" name="kernel" value="3.10.0-862.14.4.el7.x86_64"/>
</instance_attributes>

</node>

To read back the value that was just set:

# crm_attribute --type nodes --node pcmk-1 --name kernel --query
scope=nodes name=kernel value=3.10.0-862.14.4.el7.x86_64

The --type nodes indicates that this is a permanent node attribute; --type status would indicate a
transient node attribute.

Warning: Attribute values with newline or tab characters are currently displayed with newlines as "\n"
and tabs as "\t", when crm_attribute or attrd_updater query commands use --output-as=text or
leave --output-as unspecified:
# crm_attribute -N node1 -n test_attr -v "$(echo -e "a\nb\tc")" -t status
# crm_attribute -N node1 -n test_attr --query -t status
scope=status name=test_attr value=a\nb\tc

This format is deprecated. In a future release, the values will be displayed with literal whitespace
characters:
# crm_attribute -N node1 -n test_attr --query -t status
scope=status name=test_attr value=a
b c

Users should either avoid attribute values with newlines and tabs, or ensure that they can handle both
formats.

However, it’s best to use --output-as=xml when parsing attribute values from output. Newlines, tabs,
and special characters are replaced with XML character references that a conforming XML processor can
recognize and convert to literals (since 2.1.8):
# crm_attribute -N node1 -n test_attr --query -t status --output-as=xml
<pacemaker-result api-version="2.35" request="crm_attribute -N laptop -n test_attr --query -t␣
↪→status --output-as=xml">
<attribute name="test_attr" value="a&#10;b&#9;c" scope="status"/>
<status code="0" message="OK"/>

</pacemaker-result>
32 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Special node attributes

Certain node attributes have special meaning to the cluster.

Node attribute names beginning with # are considered reserved for these special attributes. Some special
attributes do not start with #, for historical reasons.

Certain special attributes are set automatically by the cluster, should never be modified directly, and can
be used only within Rules; these are listed under built-in node attributes.

For true/false values, the cluster considers a value of “1”, “y”, “yes”, “on”, or “true” (case-insensitively) to
be true, “0”, “n”, “no”, “off”, “false”, or unset to be false, and anything else to be an error.

Table 6: Node attributes with special significance
Name Description
fail-count-* Attributes whose names start with fail-count- are managed by the

cluster to track how many times particular resource operations have
failed on this node. These should be queried and cleared via the
crm_failcount or crm_resource --cleanup commands rather than
directly.

last-failure-* Attributes whose names start with last-failure- are managed
by the cluster to track when particular resource operations have
most recently failed on this node. These should be cleared via the
crm_failcount or crm_resource --cleanup commands rather than
directly.

maintenance If true, the cluster will not start or stop any resources on this
node. Any resources active on the node become unmanaged, and
any recurring operations for those resources (except those specify-
ing role as Stopped) will be paused. The maintenance-mode cluster
option, if true, overrides this. If this attribute is true, it overrides
the is-managed and maintenance meta-attributes of affected resources
and enabled meta-attribute for affected recurring actions. Pacemaker
should not be restarted on a node that is in single-node maintenance
mode.

probe_complete This is managed by the cluster to detect when nodes need to be
reprobed, and should never be used directly.

resource-discovery-enabled If the node is a remote node, fencing is enabled, and this attribute is
explicitly set to false (unset means true in this case), resource discov-
ery (probes) will not be done on this node. This is highly discouraged;
the resource-discovery location constraint property is preferred for
this purpose.

shutdown This is managed by the cluster to orchestrate the shutdown of a node,
and should never be used directly.

site-name If set, this will be used as the value of the #site-name node attribute
used in rules. (If not set, the value of the cluster-name cluster option
will be used as #site-name instead.)

standby If true, the node is in standby mode. This is typically set and queried
via the crm_standby command rather than directly.

terminate If the value is true or begins with any nonzero number, the node will
be fenced. This is typically set by tools rather than directly.

Continued on next page

2.4. Nodes 33



Pacemaker Explained, Release 3.0.0

Table 6 – continued from previous page
Name Description
#digests-* Attributes whose names start with #digests- are managed by the

cluster to detect when Unfencing needs to be redone, and should
never be used directly.

#node-unfenced When the node was last unfenced (as seconds since the epoch). This
is managed by the cluster and should never be used directly.

2.4.6 Tracking Node Health

A node may be functioning adequately as far as cluster membership is concerned, and yet be “unhealthy” in
some respect that makes it an undesirable location for resources. For example, a disk drive may be reporting
SMART errors, or the CPU may be highly loaded.

Pacemaker offers a way to automatically move resources off unhealthy nodes.

Node Health Attributes

Pacemaker will treat any node attribute whose name starts with #health as an indicator of node health.
Node health attributes may have one of the following values:

Table 7: Allowed Values for Node Health Attributes
Value Intended significance
red

This indicator is unhealthy
yellow

This indicator is close to unhealthy (whether worsening or recovering)
green

This indicator is healthy
integer

A numeric score to apply to all resources on this node (0 or positive is healthy,
negative is unhealthy)

Note: A health attribute may technically be transient or permanent, but generally only transient makes
sense.

Note: red, yellow, and green function as aliases for particular numeric scores as described later.

Node Health Strategy

Pacemaker assigns a node health score to each node, as the sum of the values of all its node health attributes.
This score will be used as a location constraint applied to this node for all resources.

The node-health-strategy cluster option controls how Pacemaker responds to changes in node health
attributes, and how it translates red, yellow, and green to scores.

Allowed values are:

34 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 8: Node Health Strategies
Value Effect
none

Do not track node health attributes at all.
migrate-on-red

Assign the value of -INFINITY to red, and 0 to yellow and green. This will cause
all resources to move off the node if any attribute is red.

only-green
Assign the value of -INFINITY to red and yellow, and 0 to green. This will cause
all resources to move off the node if any attribute is red or yellow.

progressive
Assign the value of the node-health-red cluster option to red, the value of
node-health-yellow to yellow, and the value of node-health-green to green.
Each node is additionally assigned a score of node-health-base (this allows re-
sources to start even if some attributes are yellow). This strategy gives the admin-
istrator finer control over how important each value is.

custom
Track node health attributes using the same values as progressive for red, yellow,
and green, but do not take them into account. The administrator is expected to
implement a policy by defining Rules referencing node health attributes.

Exempting a Resource from Health Restrictions

If you want a resource to be able to run on a node even if its health score would otherwise prevent it, set
the resource’s allow-unhealthy-nodes meta-attribute to true (available since 2.1.3).

This is particularly useful for node health agents, to allow them to detect when the node becomes healthy
again. If you configure a health agent without this setting, then the health agent will be banned from an
unhealthy node, and you will have to investigate and clear the health attribute manually once it is healthy
to allow resources on the node again.

If you want the meta-attribute to apply to a clone, it must be set on the clone itself, not on the resource
being cloned.

Configuring Node Health Agents

Since Pacemaker calculates node health based on node attributes, any method that sets node attributes may
be used to measure node health. The most common are resource agents and custom daemons.

Pacemaker provides examples that can be used directly or as a basis for custom code. The
ocf:pacemaker:HealthCPU, ocf:pacemaker:HealthIOWait, and ocf:pacemaker:HealthSMART resource
agents set node health attributes based on CPU and disk status.

To take advantage of this feature, add the resource to your cluster (generally as a cloned resource with a
recurring monitor action, to continually check the health of all nodes). For example:

Example HealthIOWait resource configuration

2.4. Nodes 35



Pacemaker Explained, Release 3.0.0

<clone id="resHealthIOWait-clone">
<primitive class="ocf" id="HealthIOWait" provider="pacemaker" type="HealthIOWait">
<instance_attributes id="resHealthIOWait-instance_attributes">

<nvpair id="resHealthIOWait-instance_attributes-red_limit" name="red_limit" value="30"/>
<nvpair id="resHealthIOWait-instance_attributes-yellow_limit" name="yellow_limit" value="10

↪→"/>
</instance_attributes>
<operations>

<op id="resHealthIOWait-monitor-interval-5" interval="5" name="monitor" timeout="5"/>
<op id="resHealthIOWait-start-interval-0s" interval="0s" name="start" timeout="10s"/>
<op id="resHealthIOWait-stop-interval-0s" interval="0s" name="stop" timeout="10s"/>

</operations>
</primitive>

</clone>

The resource agents use attrd_updater to set proper status for each node running this resource, as a node
attribute whose name starts with #health (for HealthIOWait, the node attribute is named #health-iowait).

When a node is no longer faulty, you can force the cluster to make it available to take resources without
waiting for the next monitor, by setting the node health attribute to green. For example:

Force node1 to be marked as healthy

# attrd_updater --name "#health-iowait" --update "green" --node "node1"

2.5 Resources

A resource is a service managed by Pacemaker. The simplest type of resource, a primitive, is described in
this chapter. More complex forms, such as groups and clones, are described in later chapters.

Every primitive has a resource agent that provides Pacemaker a standardized interface for managing the
service. This allows Pacemaker to be agnostic about the services it manages. Pacemaker doesn’t need to
understand how the service works because it relies on the resource agent to do the right thing when asked.

Every resource has a standard (also called class) specifying the interface that its resource agent follows, and
a type identifying the specific service being managed.

2.5.1 Resource Standards

Pacemaker can use resource agents complying with these standards, described in more detail below:

• ocf

• lsb

• systemd

• service

• stonith

Support for some standards is controlled by build options and so might not be available in any particular build
of Pacemaker. The command crm_resource --list-standards will show which standards are supported
by the local build.

36 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Open Cluster Framework

The Open Cluster Framework (OCF) Resource Agent API is a ClusterLabs standard for managing services.
It is the most preferred since it is specifically designed for use in a Pacemaker cluster.

OCF agents are scripts that support a variety of actions including start, stop, and monitor. They may
accept parameters, making them more flexible than other standards. The number and purpose of parameters
is left to the agent, which advertises them via the meta-data action.

Unlike other standards, OCF agents have a provider as well as a standard and type.

For more information, see the “Resource Agents” chapter of Pacemaker Administration and the OCF stan-
dard.

Systemd

Most Linux distributions use Systemd for system initialization and service management. Unit files specify
how to manage services and are usually provided by the distribution.

Pacemaker can manage systemd units of type service, socket, mount, timer, or path. Simply create a resource
with systemd as the resource standard and the unit file name as the resource type. Do not run systemctl
enable on the unit.

Important: Make sure that any systemd services to be controlled by the cluster are not enabled to start
at boot.

Linux Standard Base

LSB resource agents, also known as SysV-style, are scripts that provide start, stop, and status actions for a
service.

They are provided by some operating system distributions. If a full path is not given, they are assumed to
be located in a directory specified when your Pacemaker software was built (usually /etc/init.d).

In order to be used with Pacemaker, they must conform to the LSB specification as it relates to init scripts.

Warning: Some LSB scripts do not fully comply with the standard. For details on how to check
whether your script is LSB-compatible, see the “Resource Agents” chapter of Pacemaker Administration.
Common problems include:

• Not implementing the status action

• Not observing the correct exit status codes

• Starting a started resource returns an error

• Stopping a stopped resource returns an error

Important: Make sure the host is not configured to start any LSB services at boot that will be controlled
by the cluster.

2.5. Resources 37

https://github.com/ClusterLabs/OCF-spec/tree/main/ra
https://github.com/ClusterLabs/OCF-spec/tree/main/ra
http://www.freedesktop.org/wiki/Software/systemd
https://en.wikipedia.org/wiki/Init#SysV-styleinitscripts
http://refspecs.linux-foundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html


Pacemaker Explained, Release 3.0.0

System Services

Since there is more than one type of system service (systemd and lsb), Pacemaker supports a special
service alias which intelligently figures out which one applies to a given cluster node.

This is particularly useful when the cluster contains a mix of systemd and lsb.

If the service standard is specified, Pacemaker will try to find the named service as an LSB init script, and
if none exists, a systemd unit file.

STONITH

The stonith standard is used for managing fencing devices, discussed later in Fencing.

2.5.2 Resource Properties

These values tell the cluster which resource agent to use for the resource, where to find that resource agent
and what standards it conforms to.

Table 9: Properties of a Primitive Resource
Field Description
id

Your name for the resource
class

The standard the resource agent conforms to. Allowed values: lsb, ocf, service,
stonith, and systemd

description
Arbitrary text for user’s use (ignored by Pacemaker)

type
The name of the Resource Agent you wish to use. E.g. IPaddr or Filesystem

provider
The OCF spec allows multiple vendors to supply the same resource agent. To
use the OCF resource agents supplied by the Heartbeat project, you would specify
heartbeat here.

The XML definition of a resource can be queried with the crm_resource tool. For example:

# crm_resource --resource Email --query-xml

might produce:

A system resource definition

<primitive id="Email" class="service" type="exim"/>

Note: One of the main drawbacks to system services (lsb and systemd) is that they do not allow parameters

An OCF resource definition

38 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
<instance_attributes id="Public-IP-params">

<nvpair id="Public-IP-ip" name="ip" value="192.0.2.2"/>
</instance_attributes>

</primitive>

2.5.3 Resource Options

Resources have two types of options: meta-attributes and instance attributes. Meta-attributes apply to any
type of resource, while instance attributes are specific to each resource agent.

Resource Meta-Attributes

Meta-attributes are used by the cluster to decide how a resource should behave and can be easily set using
the --meta option of the crm_resource command.

Table 10: Meta-attributes of a Primitive Resource
Name Type Default Description
priority score 0 If not all resources can be active, the clus-

ter will stop lower-priority resources in or-
der to keep higher-priority ones active.

critical boolean true Use this value as the default for influence
in all colocation constraints involving this
resource, as well as in the implicit colo-
cation constraints created if this resource
is in a group. For details, see Colocation
Influence. (since 2.1.0)

target-role enumeration Started What state should the cluster attempt to
keep this resource in? Allowed values:

• Stopped: Force the resource to be
stopped

• Started: Allow the resource to be
started (and in the case of pro-
motable clone resources, promoted if
appropriate)

• Unpromoted: Allow the resource to
be started, but only in the unpro-
moted role if the resource is pro-
motable

• Promoted: Equivalent to Started

is-managed boolean true If false, the cluster will not start, stop, pro-
mote, or demote the resource on any node.
Recurring actions for the resource are un-
affected. Maintenance mode overrides this
setting.

Continued on next page

2.5. Resources 39



Pacemaker Explained, Release 3.0.0

Table 10 – continued from previous page
Name Type Default Description
maintenance boolean false If true, the cluster will not start, stop, pro-

mote, or demote the resource on any node,
and will pause any recurring monitors (ex-
cept those specifying role as Stopped). If
true, the maintenance-mode cluster option
or maintenance node attribute overrides
this.

resource-
stickiness

score 1 for individual clone in-
stances, 0 for all other
resources

A score that will be added to the cur-
rent node when a resource is already ac-
tive. This allows running resources to
stay where they are, even if they would be
placed elsewhere if they were being started
from a stopped state.

requires enumeration quorum for resources
with a class of
stonith, otherwise
unfencing if unfencing
is active in the cluster,
otherwise fencing if
stonith-enabled is
true, otherwise quorum

Conditions under which the resource can
be started. Allowed values:

• nothing: The cluster can always
start this resource.

• quorum: The cluster can start this
resource only if a majority of the con-
figured nodes are active.

• fencing: The cluster can start this
resource only if a majority of the
configured nodes are active and any
failed or unknown nodes have been
fenced.

• unfencing: The cluster can only
start this resource if a majority of the
configured nodes are active and any
failed or unknown nodes have been
fenced and only on nodes that have
been unfenced.

migration-
threshold

score INFINITY How many failures may occur for this
resource on a node, before this node is
marked ineligible to host this resource.
A value of 0 indicates that this fea-
ture is disabled (the node will never
be marked ineligible); by contrast, the
cluster treats INFINITY (the default) as
a very large but finite number. This
option has an effect only if the failed
operation specifies on-fail as restart
(the default), and additionally for failed
start operations, if the cluster property
start-failure-is-fatal is false.

Continued on next page

40 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 10 – continued from previous page
Name Type Default Description

failure-
timeout

duration 0 Ignore previously failed resource actions
after this much time has passed with-
out new failures (potentially allowing the
resource back to the node on which
it failed, if it previously reached its
migration-threshold there). A value of
0 indicates that failures do not expire.
WARNING: If this value is low, and
pending cluster activity prevents the clus-
ter from responding to a failure within
that time, then the failure will be ignored
completely and will not cause recovery of
the resource, even if a recurring action con-
tinues to report failure. It should be at
least greater than the longest action time-
out for all resources in the cluster. A value
in hours or days is reasonable.

multiple-
active

enumeration stop_start What should the cluster do if it ever
finds the resource active on more than one
node? Allowed values:

• block: mark the resource as unman-
aged

• stop_only: stop all active instances
and leave them that way

• stop_start: stop all active in-
stances and start the resource in one
location only

• stop_unexpected: stop all active
instances except where the resource
should be active (this should be used
only when extra instances are not ex-
pected to disrupt existing instances,
and the resource agent’s monitor of
an existing instance is capable of de-
tecting any problems that could be
caused; note that any resources or-
dered after this will still need to be
restarted) (since 2.1.3)

allow-migrate boolean true for
ocf:pacemaker:remote
resources, false other-
wise

Whether the cluster should try to “live mi-
grate” this resource when it needs to be
moved (see Migrating Resources)

allow-
unhealthy-
nodes

boolean false Whether the resource should be able to
run on a node even if the node’s health
score would otherwise prevent it (see
Tracking Node Health) (since 2.1.3)

container-
attribute-
target

enumeration Specific to bundle resources; see Bundle
Node Attributes

As an example of setting resource options, if you performed the following commands on an LSB Email

2.5. Resources 41



Pacemaker Explained, Release 3.0.0

resource:

# crm_resource --meta --resource Email --set-parameter priority --parameter-value 100
# crm_resource -m -r Email -p multiple-active -v block

the resulting resource definition might be:

An LSB resource with cluster options

<primitive id="Email" class="lsb" type="exim">
<meta_attributes id="Email-meta_attributes">
<nvpair id="Email-meta_attributes-priority" name="priority" value="100"/>
<nvpair id="Email-meta_attributes-multiple-active" name="multiple-active" value="block"/>

</meta_attributes>
</primitive>

In addition to the cluster-defined meta-attributes described above, you may also configure arbitrary meta-
attributes of your own choosing. Most commonly, this would be done for use in rules. For example, an
IT department might define a custom meta-attribute to indicate which company department each resource
is intended for. To reduce the chance of name collisions with cluster-defined meta-attributes added in the
future, it is recommended to use a unique, organization-specific prefix for such attributes.

Setting Global Defaults for Resource Meta-Attributes

To set a default value for a resource option, add it to the rsc_defaults section with crm_attribute. For
example,

# crm_attribute --type rsc_defaults --name is-managed --update false

would prevent the cluster from starting or stopping any of the resources in the configuration (unless of course
the individual resources were specifically enabled by having their is-managed set to true).

Resource Instance Attributes

The resource agents of some resource standards (lsb and systemd not among them) can be given parameters
which determine how they behave and which instance of a service they control.

If your resource agent supports parameters, you can add them with the crm_resource command. For
example,

# crm_resource --resource Public-IP --set-parameter ip --parameter-value 192.0.2.2

would create an entry in the resource like this:

An example OCF resource with instance attributes

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
<instance_attributes id="params-public-ip">

<nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
</instance_attributes>

</primitive>

42 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

For an OCF resource, the result would be an environment variable called OCF_RESKEY_ip with a value of
192.0.2.2.

The list of instance attributes supported by an OCF resource agent can be found by calling the resource agent
with the meta-data command. The output contains an XML description of all the supported attributes,
their purpose and default values.

Displaying the metadata for the Dummy resource agent template

# export OCF_ROOT=/usr/lib/ocf
# $OCF_ROOT/resource.d/pacemaker/Dummy meta-data

<?xml version="1.0"?>
<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="Dummy" version="2.0">
<version>1.1</version>

<longdesc lang="en">
This is a dummy OCF resource agent. It does absolutely nothing except keep track
of whether it is running or not, and can be configured so that actions fail or
take a long time. Its purpose is primarily for testing, and to serve as a
template for resource agent writers.
</longdesc>
<shortdesc lang="en">Example stateless resource agent</shortdesc>

<parameters>
<parameter name="state" unique-group="state">
<longdesc lang="en">
Location to store the resource state in.
</longdesc>
<shortdesc lang="en">State file</shortdesc>
<content type="string" default="/var/run/Dummy-RESOURCE_ID.state" />
</parameter>

<parameter name="passwd" reloadable="1">
<longdesc lang="en">
Fake password field
</longdesc>
<shortdesc lang="en">Password</shortdesc>
<content type="string" default="" />
</parameter>

<parameter name="fake" reloadable="1">
<longdesc lang="en">
Fake attribute that can be changed to cause a reload
</longdesc>
<shortdesc lang="en">Fake attribute that can be changed to cause a reload</shortdesc>
<content type="string" default="dummy" />
</parameter>

<parameter name="op_sleep" reloadable="1">
<longdesc lang="en">
Number of seconds to sleep during operations. This can be used to test how
the cluster reacts to operation timeouts.
</longdesc>
<shortdesc lang="en">Operation sleep duration in seconds.</shortdesc>
<content type="string" default="0" />
</parameter>

<parameter name="fail_start_on" reloadable="1">
<longdesc lang="en">
Start, migrate_from, and reload-agent actions will return failure if running on
the host specified here, but the resource will run successfully anyway (future
monitor calls will find it running). This can be used to test on-fail=ignore.
</longdesc>
<shortdesc lang="en">Report bogus start failure on specified host</shortdesc>
<content type="string" default="" />
</parameter>
<parameter name="envfile" reloadable="1">
<longdesc lang="en">
If this is set, the environment will be dumped to this file for every call.
</longdesc>
<shortdesc lang="en">Environment dump file</shortdesc>
<content type="string" default="" />
</parameter>

</parameters>

<actions>
<action name="start" timeout="20s" />
<action name="stop" timeout="20s" />
<action name="monitor" timeout="20s" interval="10s" depth="0"/>
<action name="reload" timeout="20s" />
<action name="reload-agent" timeout="20s" />
<action name="migrate_to" timeout="20s" />
<action name="migrate_from" timeout="20s" />
<action name="validate-all" timeout="20s" />
<action name="meta-data" timeout="5s" />
</actions>
</resource-agent>

2.5. Resources 43



Pacemaker Explained, Release 3.0.0

2.5.4 Pacemaker Remote Resources

Pacemaker Remote nodes are defined by resources.

Remote nodes

A remote node is defined by a connection resource using the special, built-in ocf:pacemaker:remote
resource agent.

Table 11: ocf:pacemaker:remote Instance Attributes
Name Type Default Description
server text resource ID Hostname or IP address used to connect

to the remote node. The remote executor
on the remote node must be configured to
accept connections on this address.

port port 3121 TCP port on the remote node used for its
Pacemaker Remote connection. The re-
mote executor on the remote node must
be configured to listen on this port.

recon-
nect_interval

duration 0 If positive, the cluster will attempt to re-
connect to a remote node at this interval
after an active connection has been lost.
Otherwise, the cluster will attempt to re-
connect immediately (after any fencing, if
needed).

Guest Nodes

When configuring a virtual machine as a guest node, the virtual machine is created using one of the usual
resource agents for that purpose (for example, ocf:heartbeat:VirtualDomain or ocf:heartbeat:Xen),
with additional meta-attributes.

No restrictions are enforced on what agents may be used to create a guest node, but obviously the agent must
create a distinct environment capable of running the remote executor and cluster resources. An additional
requirement is that fencing the node hosting the guest node resource must be sufficient for ensuring the guest
node is stopped. This means that not all hypervisors supported by VirtualDomain may be used to create
guest nodes; if the guest can survive the hypervisor being fenced, it is unsuitable for use as a guest node.

Table 12: Guest node meta-attributes
Name Type Default Description
remote-node text If specified, this resource defines a guest

node using this node name. The guest
must be configured to run the remote ex-
ecutor when it is started. This value must
not be the same as any resource or node
ID.

Continued on next page

44 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 12 – continued from previous page
Name Type Default Description
remote-addr text value of remote-node If remote-node is specified, the hostname

or IP address used to connect to the guest.
The remote executor on the guest must be
configured to accept connections on this
address.

remote-port port 3121 If remote-node is specified, the port on
the guest used for its Pacemaker Remote
connection. The remote executor on the
guest must be configured to listen on this
port.

remote-
connect-
timeout

timeout 60s If remote-node is specified, how long be-
fore a pending guest connection will time
out.

remote-allow-
migrate

boolean true If remote-node is specified, this acts as
the allow-migrate meta-attribute for its
implicitly created remote connection re-
source (ocf:pacemaker:remote).

Removing Pacemaker Remote Nodes

If the resource creating a remote node connection or guest node is removed from the configuration, status
output may continue to show the affected node (as offline).

If you want to get rid of that output, run the following command, replacing $NODE_NAME appropriately:

# crm_node --force --remove $NODE_NAME

Warning: Be absolutely sure that there are no references to the node’s resource in the configuration
before running the above command.

2.6 Resource Operations

Operations are actions the cluster can perform on a resource by calling the resource agent. Resource agents
must support certain common operations such as start, stop, and monitor, and may implement any others.

Operations may be explicitly configured for two purposes: to override defaults for options (such as timeout)
that the cluster will use whenever it initiates the operation, and to run an operation on a recurring basis
(for example, to monitor the resource for failure).

An OCF resource with a non-default start timeout

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
<operations>

<op id="Public-IP-start" name="start" timeout="60s"/>
</operations>
<instance_attributes id="params-public-ip">

<nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
</instance_attributes>

</primitive>

2.6. Resource Operations 45



Pacemaker Explained, Release 3.0.0

Pacemaker identifies operations by a combination of name and interval, so this combination must be unique
for each resource. That is, you should not configure two operations for the same resource with the same
name and interval.

2.6.1 Operation Properties

The id, name, interval, and role operation properties may be specified only as XML attributes of the op
element. Other operation properties may be specified in any of the following ways, from highest precedence
to lowest:

• directly in the op element as an XML attribute

• in an nvpair element within a meta_attributes element within the op element

• in an nvpair element within a meta_attributes element within operation defaults

If not specified, the default from the table below is used.

Table 13: Operation Properties
Name Type Default Description
id id A unique identifier for the XML ele-

ment (required)
name text An action name supported by the re-

source agent (required)
interval duration 0 If this is a positive value, Pacemaker

will schedule recurring instances of
this operation at the given inter-
val (which makes sense only with
name set to monitor). If this is
0, Pacemaker will apply other prop-
erties configured for this operation
to instances that are scheduled as
needed during normal cluster oper-
ation. (required)

description text Arbitrary text for user’s use (ignored
by Pacemaker)

role enumeration If this is set, the operation configura-
tion applies only on nodes where the
cluster expects the resource to be in
the specified role. This makes sense
only for recurring monitors. Allowed
values: Started, Stopped, and in
the case of promotable clone re-
sources, Unpromoted and Promoted.

timeout timeout 20s If resource agent execution does not
complete within this amount of time,
the action will be considered failed.
Note: timeouts for fencing agents
are handled specially (see the Fenc-
ing chapter).

Continued on next page

46 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 13 – continued from previous page
Name Type Default Description
on-fail enumeration

• If name is stop:
fence if stonith-
enabled is true,
otherwise block

• If name is demote:
on-fail of the
monitor action
with role set to
Promoted, if present,
enabled, and config-
ured to a value other
than demote, or
restart otherwise

• Otherwise: restart

How the cluster should respond to a
failure of this action. Allowed values:

• ignore: Pretend the resource
did not fail

• block: Do not perform any
further operations on the re-
source

• stop: Stop the resource and
leave it stopped

• demote: Demote the resource,
without a full restart. This is
valid only for promote actions,
and for monitor actions with
both a nonzero interval and
role set to Promoted; for any
other action, a configuration
error will be logged, and the
default behavior will be used.
(since 2.0.5)

• restart: Stop the resource,
and start it again if allowed
(possibly on a different node)

• fence: Fence the node on
which the resource failed

• standby: Put the node on
which the resource failed in
standby mode (forcing all re-
sources away)

enabled boolean true If false, ignore this operation def-
inition. This does not suppress all
actions of this type, but is typically
used to pause a recurring monitor.
This can complement the resource
being unmanaged (is-managed set to
false), which does not stop recur-
ring operations. Maintenance mode,
which does stop configured monitors,
overrides this setting.

Continued on next page

2.6. Resource Operations 47



Pacemaker Explained, Release 3.0.0

Table 13 – continued from previous page
Name Type Default Description
interval-origin ISO 8601 If set for a recurring action, the

action will be scheduled for this
time plus a multiple of the ac-
tion’s interval, rather than imme-
diately after the resource gains the
monitored role. For example, you
might schedule an in-depth monitor
to run once per day outside busi-
ness hours, by setting this to the de-
sired time (on any date) and setting
interval to 24h. At most one of
interval-origin and start-delay
may be set.

start-delay duration If set, the cluster will wait this long
before running the action (for the
first time, if recurring). This is an
advanced option that should gener-
ally be avoided. It can be useful for a
recurring monitor if a resource agent
incorrectly returns success from start
before the service is actually ready,
and the agent can’t be corrected, or
for a start action if a service takes
a very long time to start, and you
don’t want to block the cluster from
responding to other events during
that time. If this delay is longer
than 5 minutes, the cluster will pre-
tend that the action succeeded when
it is first scheduled for the purpose
of other actions needed, then act on
the result when it actually runs. At
most one of interval-origin and
start-delay may be set.

record-pending boolean true Operation results are always
recorded when the operation com-
pletes (successful or not). If this
is true, operations will also be
recorded when initiated, so that
status output can indicate that the
operation is in progress. (deprecated
since 3.0.0)

Note: Only one action can be configured for any given combination of name and interval.

Note: When on-fail is set to demote, recovery from failure by a successful demote causes the cluster to
recalculate whether and where a new instance should be promoted. The node with the failure is eligible, so
if promotion scores have not changed, it will be promoted again.

There is no direct equivalent of migration-threshold for the promoted role, but the same effect can be

48 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

achieved with a location constraint using a rule with a node attribute expression for the resource’s fail count.

For example, to immediately ban the promoted role from a node with any failed promote or promoted
instance monitor:

<rsc_location id="loc1" rsc="my_primitive">
<rule id="rule1" score="-INFINITY" role="Promoted" boolean-op="or">

<expression id="expr1" attribute="fail-count-my_primitive#promote_0"
operation="gte" value="1"/>

<expression id="expr2" attribute="fail-count-my_primitive#monitor_10000"
operation="gte" value="1"/>

</rule>
</rsc_location>

This example assumes that there is a promotable clone of the my_primitive resource (note that the primitive
name, not the clone name, is used in the rule), and that there is a recurring 10-second-interval monitor
configured for the promoted role (fail count attributes specify the interval in milliseconds).

2.6.2 Monitoring Resources for Failure

When Pacemaker first starts a resource, it runs one-time monitor operations (referred to as probes) to ensure
the resource is running where it’s supposed to be, and not running where it’s not supposed to be. (This
behavior can be affected by the resource-discovery location constraint property.)

Other than those initial probes, Pacemaker will not (by default) check that the resource continues to stay
healthy1. You must configure monitor operations explicitly to perform these checks.

An OCF resource with a recurring health check

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
<operations>

<op id="Public-IP-start" name="start" timeout="60s"/>
<op id="Public-IP-monitor" name="monitor" interval="60s"/>

</operations>
<instance_attributes id="params-public-ip">

<nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
</instance_attributes>

</primitive>

By default, a monitor operation will ensure that the resource is running where it is supposed to. The
target-role property can be used for further checking.

For example, if a resource has one monitor operation with interval=10 role=Started and a second
monitor operation with interval=11 role=Stopped, the cluster will run the first monitor on any nodes it
thinks should be running the resource, and the second monitor on any nodes that it thinks should not be
running the resource (for the truly paranoid, who want to know when an administrator manually starts a
service by mistake).

Note: Currently, monitors with role=Stopped are not implemented for clone resources.

1 Currently, anyway. Automatic monitoring operations may be added in a future version of Pacemaker.

2.6. Resource Operations 49



Pacemaker Explained, Release 3.0.0

2.6.3 Custom Recurring Operations

Typically, only monitor operations should be configured as recurring. However, it is possible to implement
a custom action name in an OCF agent and then configure that as a recurring operation.

This could be useful, for example, to run a report, rotate a log, or clean temporary files related to a particular
service.

Failures of custom recurring operations will be ignored by the cluster and will not be reported in cluster
status (since 3.0.0; previously, they would be treated like failed monitors). A fail count and last failure
timestamp will be recorded as transient node attributes, and those node attributes will be erased by the
crm_resource --cleanup command.

2.6.4 Setting Global Defaults for Operations

You can change the global default values for operation properties in a given cluster. These are defined in
an op_defaults section of the CIB’s configuration section, and can be set with crm_attribute. For
example,

# crm_attribute --type op_defaults --name timeout --update 20s

would default each operation’s timeout to 20 seconds. If an operation’s definition also includes a value for
timeout, then that value would be used for that operation instead.

2.6.5 When Implicit Operations Take a Long Time

The cluster will always perform a number of implicit operations: start, stop and a non-recurring monitor
operation used at startup to check whether the resource is already active. If one of these is taking too long,
then you can create an entry for them and specify a longer timeout.

An OCF resource with custom timeouts for its implicit actions

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
<operations>

<op id="public-ip-startup" name="monitor" interval="0" timeout="90s"/>
<op id="public-ip-start" name="start" interval="0" timeout="180s"/>
<op id="public-ip-stop" name="stop" interval="0" timeout="15min"/>

</operations>
<instance_attributes id="params-public-ip">

<nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
</instance_attributes>

</primitive>

2.6.6 Multiple Monitor Operations

Provided no two operations (for a single resource) have the same name and interval, you can have as
many monitor operations as you like. In this way, you can do a superficial health check every minute and
progressively more intense ones at higher intervals.

To tell the resource agent what kind of check to perform, you need to provide each monitor with a different
value for a common parameter. The OCF standard creates a special parameter called OCF_CHECK_LEVEL for

50 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

this purpose and dictates that it is “made available to the resource agent without the normal OCF_RESKEY
prefix”.

Whatever name you choose, you can specify it by adding an instance_attributes block to the op tag. It
is up to each resource agent to look for the parameter and decide how to use it.

An OCF resource with two recurring health checks, performing different levels of checks
specified via OCF_CHECK_LEVEL.

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
<operations>

<op id="public-ip-health-60" name="monitor" interval="60">
<instance_attributes id="params-public-ip-depth-60">

<nvpair id="public-ip-depth-60" name="OCF_CHECK_LEVEL" value="10"/>
</instance_attributes>

</op>
<op id="public-ip-health-300" name="monitor" interval="300">

<instance_attributes id="params-public-ip-depth-300">
<nvpair id="public-ip-depth-300" name="OCF_CHECK_LEVEL" value="20"/>

</instance_attributes>
</op>

</operations>
<instance_attributes id="params-public-ip">

<nvpair id="public-ip-level" name="ip" value="192.0.2.2"/>
</instance_attributes>

</primitive>

2.6.7 Disabling a Monitor Operation

The easiest way to stop a recurring monitor is to just delete it. However, there can be times when you only
want to disable it temporarily. In such cases, simply add enabled=false to the operation’s definition.

Example of an OCF resource with a disabled health check

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
<operations>

<op id="public-ip-check" name="monitor" interval="60s" enabled="false"/>
</operations>
<instance_attributes id="params-public-ip">

<nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
</instance_attributes>

</primitive>

This can be achieved from the command line by executing:

# cibadmin --modify --xml-text '<op id="public-ip-check" enabled="false"/>'

Once you’ve done whatever you needed to do, you can then re-enable it with

# cibadmin --modify --xml-text '<op id="public-ip-check" enabled="true"/>'

2.6. Resource Operations 51



Pacemaker Explained, Release 3.0.0

2.6.8 Handling Resource Failure

By default, Pacemaker will attempt to recover failed resources by restarting them. However, failure recovery
is highly configurable.

Failure Counts

Pacemaker tracks resource failures for each combination of node, resource, and operation (start, stop, mon-
itor, etc.).

You can query the fail count for a particular node, resource, and/or operation using the crm_failcount
command. For example, to see how many times the 10-second monitor for myrsc has failed on node1, run:

# crm_failcount --query -r myrsc -N node1 -n monitor -I 10s

If you omit the node, crm_failcount will use the local node. If you omit the operation and interval,
crm_failcount will display the sum of the fail counts for all operations on the resource.

You can use crm_resource --cleanup or crm_failcount --delete to clear fail counts. For example, to
clear the above monitor failures, run:

# crm_resource --cleanup -r myrsc -N node1 -n monitor -I 10s

If you omit the resource, crm_resource --cleanup will clear failures for all resources. If you omit the node,
it will clear failures on all nodes. If you omit the operation and interval, it will clear the failures for all
operations on the resource.

Note: Even when cleaning up only a single operation, all failed operations will disappear from the status
display. This allows us to trigger a re-check of the resource’s current status.

Higher-level tools may provide other commands for querying and clearing fail counts.

The crm_mon tool shows the current cluster status, including any failed operations. To see the current fail
counts for any failed resources, call crm_mon with the --failcounts option. This shows the fail counts per
resource (that is, the sum of any operation fail counts for the resource).

Failure Response

Normally, if a running resource fails, pacemaker will try to stop it and start it again. Pacemaker will choose
the best location to start it each time, which may be the same node that it failed on.

However, if a resource fails repeatedly, it is possible that there is an underlying problem on that node, and
you might desire trying a different node in such a case. Pacemaker allows you to set your preference via the
migration-threshold resource meta-attribute.2

If you define migration-threshold to N for a resource, it will be banned from the original node after N
failures there.

Note: The migration-threshold is per resource, even though fail counts are tracked per operation. The
operation fail counts are added together to compare against the migration-threshold.

2 The naming of this option was perhaps unfortunate as it is easily confused with live migration, the process of moving a
resource from one node to another without stopping it. Xen virtual guests are the most common example of resources that can
be migrated in this manner.

52 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

By default, fail counts remain until manually cleared by an administrator using crm_resource --cleanup
or crm_failcount --delete (hopefully after first fixing the failure’s cause). It is possible to have fail counts
expire automatically by setting the failure-timeout resource meta-attribute.

Important: A successful operation does not clear past failures. If a recurring monitor operation fails once,
succeeds many times, then fails again days later, its fail count is 2. Fail counts are cleared only by manual
intervention or failure timeout.

For example, setting migration-threshold to 2 and failure-timeout to 60s would cause the resource
to move to a new node after 2 failures, and allow it to move back (depending on stickiness and constraint
scores) after one minute.

Note: failure-timeout is measured since the most recent failure. That is, older failures do not individually
time out and lower the fail count. Instead, all failures are timed out simultaneously (and the fail count is
reset to 0) if there is no new failure for the timeout period.

There are two exceptions to the migration threshold: when a resource either fails to start or fails to stop.

If the cluster property start-failure-is-fatal is set to true (which is the default), start failures cause
the fail count to be set to INFINITY and thus always cause the resource to move immediately.

Stop failures are slightly different and crucial. If a resource fails to stop and fencing is enabled, then the
cluster will fence the node in order to be able to start the resource elsewhere. If fencing is disabled, then the
cluster has no way to continue and will not try to start the resource elsewhere, but will try to stop it again
after any failure timeout or clearing.

2.6.9 Reloading an Agent After a Definition Change

The cluster automatically detects changes to the configuration of active resources. The cluster’s normal
response is to stop the service (using the old definition) and start it again (with the new definition). This
works, but some resource agents are smarter and can be told to use a new set of options without restarting.

To take advantage of this capability, the resource agent must:

• Implement the reload-agent action. What it should do depends completely on your application!

Note: Resource agents may also implement a reload action to make the managed service reload its
own native configuration. This is different from reload-agent, which makes effective changes in the
resource’s Pacemaker configuration (specifically, the values of the agent’s reloadable parameters).

• Advertise the reload-agent operation in the actions section of its meta-data.

• Set the reloadable attribute to 1 in the parameters section of its meta-data for any parameters
eligible to be reloaded after a change.

Once these requirements are satisfied, the cluster will automatically know to reload the resource (instead of
restarting) when a reloadable parameter changes.

Note: Metadata will not be re-read unless the resource needs to be started. If you edit the agent of an
already active resource to set a parameter reloadable, the resource may restart the first time the parameter
value changes.

2.6. Resource Operations 53



Pacemaker Explained, Release 3.0.0

Note: If both a reloadable and non-reloadable parameter are changed simultaneously, the resource will be
restarted.

2.6.10 Migrating Resources

Normally, when the cluster needs to move a resource, it fully restarts the resource (that is, it stops the
resource on the current node and starts it on the new node).

However, some types of resources, such as many virtual machines, are able to move to another location
without loss of state (often referred to as live migration or hot migration). In pacemaker, this is called live
migration. Pacemaker can be configured to migrate a resource when moving it, rather than restarting it.

Not all resources are able to migrate; see the migration checklist below. Even those that can, won’t do so in
all situations. Conceptually, there are two requirements from which the other prerequisites follow:

• The resource must be active and healthy at the old location; and

• everything required for the resource to run must be available on both the old and new locations.

The cluster is able to accommodate both push and pull migration models by requiring the resource agent to
support two special actions: migrate_to (performed on the current location) and migrate_from (performed
on the destination).

In push migration, the process on the current location transfers the resource to the new location where is it
later activated. In this scenario, most of the work would be done in the migrate_to action and, if anything,
the activation would occur during migrate_from.

Conversely for pull, the migrate_to action is practically empty and migrate_from does most of the work,
extracting the relevant resource state from the old location and activating it.

There is no wrong or right way for a resource agent to implement migration, as long as it works.

Migration Checklist

• The resource may not be a clone.

• The resource agent standard must be OCF.

• The resource must not be in a failed or degraded state.

• The resource agent must support migrate_to and migrate_from actions, and advertise them in its
meta-data.

• The resource must have the allow-migrate meta-attribute set to true (which is not the default).

If an otherwise migratable resource depends on another resource via an ordering constraint, there are special
situations in which it will be restarted rather than migrated.

For example, if the resource depends on a clone, and at the time the resource needs to be moved, the clone
has instances that are stopping and instances that are starting, then the resource will be restarted. The
scheduler is not yet able to model this situation correctly and so takes the safer (if less optimal) path.

Also, if a migratable resource depends on a non-migratable resource, and both need to be moved, the
migratable resource will be restarted.

54 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

2.7 Resource Constraints

2.7.1 Deciding Which Nodes a Resource Can Run On

Location constraints tell the cluster which nodes a resource can run on.

There are two alternative strategies. One way is to say that, by default, resources can run anywhere, and
then the location constraints specify nodes that are not allowed (an opt-out cluster). The other way is to
start with nothing able to run anywhere, and use location constraints to selectively enable allowed nodes (an
opt-in cluster).

Whether you should choose opt-in or opt-out depends on your personal preference and the make-up of your
cluster. If most of your resources can run on most of the nodes, then an opt-out arrangement is likely to
result in a simpler configuration. On the other-hand, if most resources can only run on a small subset of
nodes, an opt-in configuration might be simpler.

Location Properties

Table 14: Attributes of a rsc_location Element
Name Type Default Description
id id A unique name for the constraint (required)
rsc id The name of the resource to which this constraint ap-

plies. A location constraint must either have a rsc, have a
rsc-pattern, or contain at least one resource set.

rsc-pattern text A pattern matching the names of resources to which this
constraint applies. The syntax is the same as POSIX ex-
tended regular expressions, with the addition of an initial !
indicating that resources not matching the pattern are se-
lected. If the regular expression contains submatches, and
the constraint contains a rule, the submatches can be refer-
enced as %1 through %9 in the rule’s score-attribute or a
rule expression’s attribute (see Specifying location scores
using pattern submatches). A location constraint must ei-
ther have a rsc, have a rsc-pattern, or contain at least
one resource set.

node text The name of the node to which this constraint applies. A
location constraint must either have a node and score, or
contain at least one rule.

score score Positive values indicate a preference for running the affected
resource(s) on node – the higher the value, the stronger the
preference. Negative values indicate the resource(s) should
avoid this node (a value of -INFINITY changes “should”
to “must”). A location constraint must either have a node
and score, or contain at least one rule.

Continued on next page

2.7. Resource Constraints 55

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_04


Pacemaker Explained, Release 3.0.0

Table 14 – continued from previous page
Name Type Default Description
role enumeration Started This is significant only for promotable clones, is allowed

only if rsc or rsc-pattern is set, and is ignored if the
constraint contains a rule. Allowed values:

• Started or Unpromoted: The constraint affects the
location of all instances of the resource. (A promoted
instance must start in the unpromoted role before be-
ing promoted, so any location requirement for unpro-
moted instances also affects promoted instances.)

• Promoted: The constraint does not affect the location
of instances, but instead affects which of the instances
will be promoted.

resource-
discovery

enumeration always Whether Pacemaker should perform resource discovery
(that is, check whether the resource is already running)
for this resource on this node. This should normally be
left as the default, so that rogue instances of a service can
be stopped when they are running where they are not sup-
posed to be. However, there are two situations where dis-
abling resource discovery is a good idea: when a service
is not installed on a node, discovery might return an error
(properly written OCF agents will not, so this is usually
only seen with other agent types); and when Pacemaker
Remote is used to scale a cluster to hundreds of nodes, lim-
iting resource discovery to allowed nodes can significantly
boost performance. Allowed values:

• always: Always perform resource discovery for the
specified resource on this node.

• never: Never perform resource discovery for the
specified resource on this node. This option should
generally be used with a -INFINITY score, although
that is not strictly required.

• exclusive: Perform resource discovery for the spec-
ified resource only on this node (and other nodes
similarly marked as exclusive). Multiple location
constraints using exclusive discovery for the same
resource across different nodes creates a subset of
nodes resource-discovery is exclusive to. If a resource
is marked for exclusive discovery on one or more
nodes, that resource is only allowed to be placed
within that subset of nodes.

Warning: Setting resource-discovery to never or exclusive removes Pacemaker’s ability to de-
tect and stop unwanted instances of a service running where it’s not supposed to be. It is up to
the system administrator (you!) to make sure that the service can never be active on nodes without
resource-discovery (such as by leaving the relevant software uninstalled).

Asymmetrical “Opt-In” Clusters

To create an opt-in cluster, start by preventing resources from running anywhere by default:

56 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

# crm_attribute --name symmetric-cluster --update false

Then start enabling nodes. The following fragment says that the web server prefers sles-1, the database
prefers sles-2 and both can fail over to sles-3 if their most preferred node fails.

Opt-in location constraints for two resources

<constraints>
<rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
<rsc_location id="loc-2" rsc="Webserver" node="sles-3" score="0"/>
<rsc_location id="loc-3" rsc="Database" node="sles-2" score="200"/>
<rsc_location id="loc-4" rsc="Database" node="sles-3" score="0"/>

</constraints>

Symmetrical “Opt-Out” Clusters

To create an opt-out cluster, start by allowing resources to run anywhere by default:

# crm_attribute --name symmetric-cluster --update true

Then start disabling nodes. The following fragment is the equivalent of the above opt-in configuration.

Opt-out location constraints for two resources

<constraints>
<rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
<rsc_location id="loc-2-do-not-run" rsc="Webserver" node="sles-2" score="-INFINITY"/>
<rsc_location id="loc-3-do-not-run" rsc="Database" node="sles-1" score="-INFINITY"/>
<rsc_location id="loc-4" rsc="Database" node="sles-2" score="200"/>

</constraints>

What if Two Nodes Have the Same Score

If two nodes have the same score, then the cluster will choose one. This choice may seem random and may
not be what was intended, however the cluster was not given enough information to know any better.

Constraints where a resource prefers two nodes equally

<constraints>
<rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="INFINITY"/>
<rsc_location id="loc-2" rsc="Webserver" node="sles-2" score="INFINITY"/>
<rsc_location id="loc-3" rsc="Database" node="sles-1" score="500"/>
<rsc_location id="loc-4" rsc="Database" node="sles-2" score="300"/>
<rsc_location id="loc-5" rsc="Database" node="sles-2" score="200"/>

</constraints>

In the example above, assuming no other constraints and an inactive cluster, Webserver would probably
be placed on sles-1 and Database on sles-2. It would likely have placed Webserver based on the node’s

2.7. Resource Constraints 57



Pacemaker Explained, Release 3.0.0

uname and Database based on the desire to spread the resource load evenly across the cluster. However
other factors can also be involved in more complex configurations.

Specifying locations using pattern matching

A location constraint can affect all resources whose IDs match a given pattern. The following example bans
resources named ip-httpd, ip-asterisk, ip-gateway, etc., from node1.

Location constraint banning all resources matching a pattern from one node

<constraints>
<rsc_location id="ban-ips-from-node1" rsc-pattern="ip-.*" node="node1" score="-INFINITY"/>

</constraints>

2.7.2 Specifying the Order in which Resources Should Start/Stop

Ordering constraints tell the cluster the order in which certain resource actions should occur.

Important: Ordering constraints affect only the ordering of resource actions; they do not require that the
resources be placed on the same node. If you want resources to be started on the same node and in a specific
order, you need both an ordering constraint and a colocation constraint (see Placing Resources Relative to
other Resources), or alternatively, a group (see Groups - A Syntactic Shortcut).

Ordering Properties

Table 15: Attributes of a rsc_order Element
Field Default Description
id A unique name for the constraint
first Name of the resource that the then resource depends on
then Name of the dependent resource
first-action start The action that the first resource must complete before

then-action can be initiated for the then resource. Al-
lowed values: start, stop, promote, demote.

then-action value of first-action The action that the then resource can execute only after
the first-action on the first resource has completed.
Allowed values: start, stop, promote, demote.

Continued on next page

58 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 15 – continued from previous page
Field Default Description
kind Mandatory How to enforce the constraint. Allowed values:

• Mandatory: then-action will never be initiated for
the then resource unless and until first-action suc-
cessfully completes for the first resource.

• Optional: The constraint applies only if both spec-
ified resource actions are scheduled in the same tran-
sition (that is, in response to the same cluster state).
This means that then-action is allowed on the then
resource regardless of the state of the first resource,
but if both actions happen to be scheduled at the
same time, they will be ordered.

• Serialize: Ensure that the specified actions are
never performed concurrently for the specified re-
sources. First-action and then-action can be ex-
ecuted in either order, but one must complete before
the other can be initiated. An example use case is
when resource start-up puts a high load on the host.

symmetrical TRUE for Mandatory and
Optional kinds. FALSE for
Serialize kind.

If true, the reverse of the constraint applies for the opposite
action (for example, if B starts after A starts, then B stops
before A stops). Serialize orders cannot be symmetrical.

Promote and demote apply to promotable clone resources.

Optional and mandatory ordering

Here is an example of ordering constraints where Database must start before Webserver, and IP should
start before Webserver if they both need to be started:

Optional and mandatory ordering constraints

<constraints>
<rsc_order id="order-1" first="IP" then="Webserver" kind="Optional"/>
<rsc_order id="order-2" first="Database" then="Webserver" kind="Mandatory" />

</constraints>

Because the above example lets symmetrical default to TRUE, Webserver must be stopped before
Database can be stopped, and Webserver should be stopped before IP if they both need to be stopped.

Symmetric and asymmetric ordering

A mandatory symmetric ordering of “start A then start B” implies not only that the start actions must be
ordered, but that B is not allowed to be active unless A is active. For example, if the ordering is added to
the configuration when A is stopped (due to target-role, failure, etc.) and B is already active, then B will
be stopped.

By contrast, asymmetric ordering of “start A then start B” means the stops can occur in either order, which
implies that B can remain active in the same situation.

2.7. Resource Constraints 59



Pacemaker Explained, Release 3.0.0

2.7.3 Placing Resources Relative to other Resources

Colocation constraints tell the cluster that the location of one resource depends on the location of another
one.

Colocation has an important side-effect: it affects the order in which resources are assigned to a node. Think
about it: You can’t place A relative to B unless you know where B is1.

So when you are creating colocation constraints, it is important to consider whether you should colocate A
with B, or B with A.

Important: Colocation constraints affect only the placement of resources; they do not require that the
resources be started in a particular order. If you want resources to be started on the same node and in a
specific order, you need both an ordering constraint (see Specifying the Order in which Resources Should
Start/Stop) and a colocation constraint, or alternatively, a group (see Groups - A Syntactic Shortcut).

Colocation Properties

Table 16: Attributes of a rsc_colocation Constraint
Field Default Description
id A unique name for the constraint (required).
rsc The name of a resource that should be located relative to

with-rsc. A colocation constraint must either contain at
least one resource set, or specify both rsc and with-rsc.

with-rsc The name of the resource used as the colocation target.
The cluster will decide where to put this resource first and
then decide where to put rsc. A colocation constraint
must either contain at least one resource set, or specify
both rsc and with-rsc.

node-attribute #uname If rsc and with-rsc are specified, this node attribute
must be the same on the node running rsc and the node
running with-rsc for the constraint to be satisfied. (For
details, see Colocation by Node Attribute.)

score 0 Positive values indicate the resources should run on the
same node. Negative values indicate the resources should
run on different nodes. Values of +/- INFINITY change
“should” to “must”.

rsc-role Started If rsc and with-rsc are specified, and rsc is a promotable
clone, the constraint applies only to rsc instances in
this role. Allowed values: Started, Stopped, Promoted,
Unpromoted. For details, see Promotable Clone Con-
straints.

with-rsc-role Started If rsc and with-rsc are specified, and with-rsc is a pro-
motable clone, the constraint applies only to with-rsc in-
stances in this role. Allowed values: Started, Stopped,
Promoted, Unpromoted. For details, see Promotable
Clone Constraints.

Continued on next page

1 While the human brain is sophisticated enough to read the constraint in any order and choose the correct one depending
on the situation, the cluster is not quite so smart. Yet.

60 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 16 – continued from previous page
Field Default Description
influence value of critical

meta-attribute for
rsc

Whether to consider the location preferences of rsc when
with-rsc is already active. Allowed values: true, false.
For details, see Colocation Influence. (since 2.1.0)

Mandatory Placement

Mandatory placement occurs when the constraint’s score is +INFINITY or -INFINITY. In such cases,
if the constraint can’t be satisfied, then the rsc resource is not permitted to run. For score=INFINITY, this
includes cases where the with-rsc resource is not active.

If you need resource A to always run on the same machine as resource B, you would add the following
constraint:

Mandatory colocation constraint for two resources

<rsc_colocation id="colocate" rsc="A" with-rsc="B" score="INFINITY"/>

Remember, because INFINITY was used, if B can’t run on any of the cluster nodes (for whatever reason)
then A will not be allowed to run. Whether A is running or not has no effect on B.

Alternatively, you may want the opposite – that A cannot run on the same machine as B. In this case, use
score="-INFINITY".

Mandatory anti-colocation constraint for two resources

<rsc_colocation id="anti-colocate" rsc="A" with-rsc="B" score="-INFINITY"/>

Again, by specifying -INFINITY, the constraint is binding. So if the only place left to run is where B
already is, then A may not run anywhere.

As with INFINITY, B can run even if A is stopped. However, in this case A also can run if B is stopped,
because it still meets the constraint of A and B not running on the same node.

Advisory Placement

If mandatory placement is about “must” and “must not”, then advisory placement is the “I’d prefer if”
alternative.

For colocation constraints with scores greater than -INFINITY and less than INFINITY, the cluster will
try to accommodate your wishes, but may ignore them if other factors outweigh the colocation score. Those
factors might include other constraints, resource stickiness, failure thresholds, whether other resources would
be prevented from being active, etc.

Advisory colocation constraint for two resources

<rsc_colocation id="colocate-maybe" rsc="A" with-rsc="B" score="500"/>

2.7. Resource Constraints 61



Pacemaker Explained, Release 3.0.0

Colocation by Node Attribute

The node-attribute property of a colocation constraints allows you to express the requirement, “these
resources must be on similar nodes”.

As an example, imagine that you have two Storage Area Networks (SANs) that are not controlled by the
cluster, and each node is connected to one or the other. You may have two resources r1 and r2 such that r2
needs to use the same SAN as r1, but doesn’t necessarily have to be on the same exact node. In such a case,
you could define a node attribute named san, with the value san1 or san2 on each node as appropriate.
Then, you could colocate r2 with r1 using node-attribute set to san.

Colocation Influence

By default, if A is colocated with B, the cluster will take into account A’s preferences when deciding where
to place B, to maximize the chance that both resources can run.

For a detailed look at exactly how this occurs, see Colocation Explained.

However, if influence is set to false in the colocation constraint, this will happen only if B is inactive and
needing to be started. If B is already active, A’s preferences will have no effect on placing B.

An example of what effect this would have and when it would be desirable would be a nonessential reporting
tool colocated with a resource-intensive service that takes a long time to start. If the reporting tool fails
enough times to reach its migration threshold, by default the cluster will want to move both resources to
another node if possible. Setting influence to false on the colocation constraint would mean that the
reporting tool would be stopped in this situation instead, to avoid forcing the service to move.

The critical resource meta-attribute is a convenient way to specify the default for all colocation constraints
and groups involving a particular resource.

Note: If a noncritical resource is a member of a group, all later members of the group will be treated as
noncritical, even if they are marked as (or left to default to) critical.

2.7.4 Resource Sets

Resource sets allow multiple resources to be affected by a single constraint.

A set of 3 resources

<resource_set id="resource-set-example">
<resource_ref id="A"/>
<resource_ref id="B"/>
<resource_ref id="C"/>

</resource_set>

Resource sets are valid inside rsc_location, rsc_order (see Ordering Sets of Resources), rsc_colocation
(see Colocating Sets of Resources), and rsc_ticket (see Configuring Ticket Dependencies) constraints.

A resource set has a number of properties that can be set, though not all have an effect in all contexts.

62 Chapter 2. Table of Contents

http://clusterlabs.org/doc/Colocation_Explained.pdf


Pacemaker Explained, Release 3.0.0

Table 17: Attributes of a resource_set Element
Field Default Description
id A unique name for the set (required)
sequential true Whether the members of the set must be acted on in or-

der. Meaningful within rsc_order and rsc_colocation.
require-all true Whether all members of the set must be active before

continuing. With the current implementation, the cluster
may continue even if only one member of the set is started,
but if more than one member of the set is starting at the
same time, the cluster will still wait until all of those
have started before continuing (this may change in future
versions). Meaningful within rsc_order.

role The constraint applies only to resource set members that
are Promotable clones in this role. Meaningful within
rsc_location, rsc_colocation and rsc_ticket. Al-
lowed values: Started, Promoted, Unpromoted. For de-
tails, see Promotable Clone Constraints.

action start The action that applies to all members of the set. Mean-
ingful within rsc_order. Allowed values: start, stop,
promote, demote.

score Advanced use only. Use a specific score for this set. Mean-
ingful within rsc_location or rsc_colocation.

kind Advanced use only. Use a specific kind for this set. Mean-
ingful within rsc_order.

Anti-colocation Chains

Sometimes, you would like a set of resources to be anti-colocated with each other. For example, resource1,
resource2, and resource3 must all run on different nodes.

A straightforward approach would be to configure either separate colocations or a resource set, with
-INFINITY scores between all the resources.

However, this will not work as expected.

Resource sets may in the future gain new syntax for this specific situation, but for now, a workaround is
to use utilization instead of colocations to keep the resources apart. Create a utilization attribute for the
anti-colocation, assign the same value to each resource, and give each node the capacity to run one resource.

2.7.5 Ordering Sets of Resources

A common situation is for an administrator to create a chain of ordered resources, such as:

A chain of ordered resources

<constraints>
<rsc_order id="order-1" first="A" then="B" />
<rsc_order id="order-2" first="B" then="C" />
<rsc_order id="order-3" first="C" then="D" />

</constraints>

2.7. Resource Constraints 63



Pacemaker Explained, Release 3.0.0

Visual representation of the four resources’ start order for the above constraints

Ordered Set

To simplify this situation, Resource Sets can be used within ordering constraints:

A chain of ordered resources expressed as a set

<constraints>
<rsc_order id="order-1">

<resource_set id="ordered-set-example" sequential="true">
<resource_ref id="A"/>
<resource_ref id="B"/>
<resource_ref id="C"/>
<resource_ref id="D"/>

</resource_set>
</rsc_order>

</constraints>

While the set-based format is not less verbose, it is significantly easier to get right and maintain.

Important: If you use a higher-level tool, pay attention to how it exposes this functionality. Depending
on the tool, creating a set A B may be equivalent to A then B, or B then A.

Ordering Multiple Sets

The syntax can be expanded to allow sets of resources to be ordered relative to each other, where the
members of each individual set may be ordered or unordered (controlled by the sequential property). In
the example below, A and B can both start in parallel, as can C and D, however C and D can only start
once both A and B are active.

Ordered sets of unordered resources

<constraints>
<rsc_order id="order-1">

<resource_set id="ordered-set-1" sequential="false">
<resource_ref id="A"/>
<resource_ref id="B"/>

</resource_set>
<resource_set id="ordered-set-2" sequential="false">

<resource_ref id="C"/>
<resource_ref id="D"/>

</resource_set>
</rsc_order>

</constraints>

64 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Visual representation of the start order for two ordered sets of unordered resources

Of course either set – or both sets – of resources can also be internally ordered (by setting
sequential="true") and there is no limit to the number of sets that can be specified.

Advanced use of set ordering - Three ordered sets, two of which are internally unordered

<constraints>
<rsc_order id="order-1">

<resource_set id="ordered-set-1" sequential="false">
<resource_ref id="A"/>
<resource_ref id="B"/>

</resource_set>
<resource_set id="ordered-set-2" sequential="true">
<resource_ref id="C"/>
<resource_ref id="D"/>

</resource_set>
<resource_set id="ordered-set-3" sequential="false">
<resource_ref id="E"/>
<resource_ref id="F"/>

</resource_set>
</rsc_order>

</constraints>

2.7. Resource Constraints 65



Pacemaker Explained, Release 3.0.0

Visual representation of the start order for the three sets defined above

Important: An ordered set with sequential=false makes sense only if there is another set in the
constraint. Otherwise, the constraint has no effect.

Resource Set OR Logic

The unordered set logic discussed so far has all been “AND” logic. To illustrate this take the 3 resource set
figure in the previous section. Those sets can be expressed, (A and B) then (C) then (D) then (E and
F).

Say for example we want to change the first set, (A and B), to use “OR” logic so the sets look like this:
(A or B) then (C) then (D) then (E and F). This functionality can be achieved through the use of
the require-all option. This option defaults to TRUE which is why the “AND” logic is used by default.
Setting require-all=false means only one resource in the set needs to be started before continuing on to
the next set.

Resource Set “OR” logic: Three ordered sets, where the first set is internally unordered
with “OR” logic

<constraints>
<rsc_order id="order-1">

<resource_set id="ordered-set-1" sequential="false" require-all="false">
<resource_ref id="A"/>
<resource_ref id="B"/>

</resource_set>
<resource_set id="ordered-set-2" sequential="true">
<resource_ref id="C"/>
<resource_ref id="D"/>

</resource_set>
<resource_set id="ordered-set-3" sequential="false">
<resource_ref id="E"/>
<resource_ref id="F"/>

</resource_set>
</rsc_order>

</constraints>

66 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Important: An ordered set with require-all=false makes sense only in conjunction with
sequential=false. Think of it like this: sequential=false modifies the set to be an unordered set
using “AND” logic by default, and adding require-all=false flips the unordered set’s “AND” logic to
“OR” logic.

2.7.6 Colocating Sets of Resources

Another common situation is for an administrator to create a set of colocated resources.

The simplest way to do this is to define a resource group (see Groups - A Syntactic Shortcut), but that
cannot always accurately express the desired relationships. For example, maybe the resources do not need
to be ordered.

Another way would be to define each relationship as an individual constraint, but that causes a difficult-to-
follow constraint explosion as the number of resources and combinations grow.

Colocation chain as individual constraints, where A is placed first, then B, then C, then D

<constraints>
<rsc_colocation id="coloc-1" rsc="D" with-rsc="C" score="INFINITY"/>
<rsc_colocation id="coloc-2" rsc="C" with-rsc="B" score="INFINITY"/>
<rsc_colocation id="coloc-3" rsc="B" with-rsc="A" score="INFINITY"/>

</constraints>

To express complicated relationships with a simplified syntax2, resource sets can be used within colocation
constraints.

Equivalent colocation chain expressed using resource_set

<constraints>
<rsc_colocation id="coloc-1" score="INFINITY" >
<resource_set id="colocated-set-example" sequential="true">

<resource_ref id="A"/>
<resource_ref id="B"/>
<resource_ref id="C"/>
<resource_ref id="D"/>

</resource_set>
</rsc_colocation>

</constraints>

Note: Within a resource_set, the resources are listed in the order they are placed, which is the reverse of
the order in which they are colocated. In the above example, resource A is placed before resource B, which
is the same as saying resource B is colocated with resource A.

As with individual constraints, a resource that can’t be active prevents any resource that must be colocated
with it from being active. In both of the two previous examples, if B is unable to run, then both C and by
inference D must remain stopped.

2 which is not the same as saying easy to follow

2.7. Resource Constraints 67



Pacemaker Explained, Release 3.0.0

Important: If you use a higher-level tool, pay attention to how it exposes this functionality. Depending
on the tool, creating a set A B may be equivalent to A with B, or B with A.

Resource sets can also be used to tell the cluster that entire sets of resources must be colocated relative to
each other, while the individual members within any one set may or may not be colocated relative to each
other (determined by the set’s sequential property).

In the following example, resources B, C, and D will each be colocated with A (which will be placed first).
A must be able to run in order for any of the resources to run, but any of B, C, or D may be stopped
without affecting any of the others.

Using colocated sets to specify a shared dependency

<constraints>
<rsc_colocation id="coloc-1" score="INFINITY" >
<resource_set id="colocated-set-2" sequential="false">

<resource_ref id="B"/>
<resource_ref id="C"/>
<resource_ref id="D"/>

</resource_set>
<resource_set id="colocated-set-1" sequential="true">
<resource_ref id="A"/>

</resource_set>
</rsc_colocation>

</constraints>

Note: Pay close attention to the order in which resources and sets are listed. While the members of any
one sequential set are placed first to last (i.e., the colocation dependency is last with first), multiple sets are
placed last to first (i.e. the colocation dependency is first with last).

Important: A colocated set with sequential="false" makes sense only if there is another set in the
constraint. Otherwise, the constraint has no effect.

There is no inherent limit to the number and size of the sets used. The only thing that matters is that in
order for any member of one set in the constraint to be active, all members of sets listed after it must also be
active (and naturally on the same node); and if a set has sequential="true", then in order for one member
of that set to be active, all members listed before it must also be active.

If desired, you can restrict the dependency to instances of promotable clone resources that are in a specific
role, using the set’s role property.

Colocation in which the members of the middle set have no interdependencies, and the last
set listed applies only to promoted instances

68 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

<constraints>
<rsc_colocation id="coloc-1" score="INFINITY" >
<resource_set id="colocated-set-1" sequential="true">

<resource_ref id="F"/>
<resource_ref id="G"/>

</resource_set>
<resource_set id="colocated-set-2" sequential="false">
<resource_ref id="C"/>
<resource_ref id="D"/>
<resource_ref id="E"/>

</resource_set>
<resource_set id="colocated-set-3" sequential="true" role="Promoted">
<resource_ref id="A"/>
<resource_ref id="B"/>

</resource_set>
</rsc_colocation>

</constraints>

Visual representation of the above example (resources are placed from left to right)

Note: Unlike ordered sets, colocated sets do not use the require-all option.

2.7.7 External Resource Dependencies

Sometimes, a resource will depend on services that are not managed by the cluster. An example might be
a resource that requires a file system that is not managed by the cluster but mounted by systemd at boot
time.

To accommodate this, the pacemaker systemd service depends on a normally empty target called
resource-agents-deps.target. The system administrator may create a unit drop-in for that target spec-
ifying the dependencies, to ensure that the services are started before Pacemaker starts and stopped after
Pacemaker stops.

2.7. Resource Constraints 69



Pacemaker Explained, Release 3.0.0

Typically, this is accomplished by placing a unit file in the /etc/systemd/system/resource-agents-deps.
target.d directory, with directives such as Requires and After specifying the dependencies as needed.

2.8 Fencing

2.8.1 What Is Fencing?

Fencing is the ability to make a node unable to run resources, even when that node is unresponsive to cluster
commands.

Fencing is also known as STONITH, an acronym for “Shoot The Other Node In The Head”, since the most
common fencing method is cutting power to the node. Another method is “fabric fencing”, cutting the node’s
access to some capability required to run resources (such as network access or a shared disk).

2.8.2 Why Is Fencing Necessary?

Fencing protects your data from being corrupted by malfunctioning nodes or unintentional concurrent access
to shared resources.

Fencing protects against the “split brain” failure scenario, where cluster nodes have lost the ability to
reliably communicate with each other but are still able to run resources. If the cluster just assumed that
uncommunicative nodes were down, then multiple instances of a resource could be started on different nodes.

The effect of split brain depends on the resource type. For example, an IP address brought up on two hosts
on a network will cause packets to randomly be sent to one or the other host, rendering the IP useless.
For a database or clustered file system, the effect could be much more severe, causing data corruption or
divergence.

Fencing is also used when a resource cannot otherwise be stopped. If a resource fails to stop on a node, it
cannot be started on a different node without risking the same type of conflict as split-brain. Fencing the
original node ensures the resource can be safely started elsewhere.

Users may also configure the on-fail property of Resource Operations or the loss-policy property of ticket
constraints to fence, in which case the cluster will fence the resource’s node if the operation fails or the
ticket is lost.

2.8.3 Fence Devices

A fence device or fencing device is a special type of resource that provides the means to fence a node.

Examples of fencing devices include intelligent power switches and IPMI devices that accept SNMP com-
mands to cut power to a node, and iSCSI controllers that allow SCSI reservations to be used to cut a node’s
access to a shared disk.

Since fencing devices will be used to recover from loss of networking connectivity to other nodes, it is essential
that they do not rely on the same network as the cluster itself, otherwise that network becomes a single
point of failure.

Since loss of a node due to power outage is indistinguishable from loss of network connectivity to that node,
it is also essential that at least one fence device for a node does not share power with that node. For example,
an on-board IPMI controller that shares power with its host should not be used as the sole fencing device
for that host.

70 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Since fencing is used to isolate malfunctioning nodes, no fence device should rely on its target functioning
properly. This includes, for example, devices that ssh into a node and issue a shutdown command (such
devices might be suitable for testing, but never for production).

2.8.4 Fence Agents

A fence agent or fencing agent is a stonith-class resource agent.

The fence agent standard provides commands (such as off and reboot) that the cluster can use to fence
nodes. As with other resource agent classes, this allows a layer of abstraction so that Pacemaker doesn’t
need any knowledge about specific fencing technologies – that knowledge is isolated in the agent.

Pacemaker supports two fence agent standards, both inherited from no-longer-active projects:

• Red Hat Cluster Suite (RHCS) style: These are typically installed in /usr/sbin with names starting
with fence_.

• Linux-HA style: These typically have names starting with external/. Pacemaker can support these
agents using the fence_legacy RHCS-style agent as a wrapper, if support was enabled when Pace-
maker was built, which requires the cluster-glue library.

2.8.5 When a Fence Device Can Be Used

Fencing devices do not actually “run” like most services. Typically, they just provide an interface for sending
commands to an external device.

Additionally, fencing may be initiated by Pacemaker, by other cluster-aware software such as DRBD or
DLM, or manually by an administrator, at any point in the cluster life cycle, including before any resources
have been started.

To accommodate this, Pacemaker does not require the fence device resource to be “started” in order to be
used. Whether a fence device is started or not determines whether a node runs any recurring monitor for
the device, and gives the node a slight preference for being chosen to execute fencing using that device.

By default, any node can execute any fencing device. If a fence device is disabled by setting its target-role
to Stopped, then no node can use that device. If a location constraint with a negative score prevents a
specific node from “running” a fence device, then that node will never be chosen to execute fencing using the
device. A node may fence itself, but the cluster will choose that only if no other nodes can do the fencing.

A common configuration scenario is to have one fence device per target node. In such a case, users often
configure anti-location constraints so that the target node does not monitor its own device.

2.8.6 Limitations of Fencing Resources

Fencing resources have certain limitations that other resource classes don’t:

• They may have only one set of meta-attributes and one set of instance attributes.

• If Rules are used to determine fencing resource options, these might be evaluated only when first read,
meaning that later changes to the rules will have no effect. Therefore, it is better to avoid confusion
and not use rules at all with fencing resources.

These limitations could be revisited if there is sufficient user demand.

2.8. Fencing 71



Pacemaker Explained, Release 3.0.0

2.8.7 Special Meta-Attributes for Fencing Resources

The table below lists special resource meta-attributes that may be set for any fencing resource.

Table 18: Additional Properties of Fencing Resources
Field Type Default Description
provides string

Any special capability provided by the fence
device. Currently, only one such capability is
meaningful: unfencing.

2.8.8 Special Instance Attributes for Fencing Resources

The table below lists special instance attributes that may be set for any fencing resource (not meta-attributes,
even though they are interpreted by Pacemaker rather than the fence agent). These are also listed in the
man page for pacemaker-fenced.

Table 19: Additional Properties of Fencing Resources
Name Type Default Description
stonith-timeout timeout This is not used by Pacemaker (see the

pcmk_reboot_timeout, pcmk_off_timeout,
etc., properties instead), but it may be used
by Linux-HA fence agents.

pcmk_host_map text A mapping of node names to ports for de-
vices that do not understand the node names.
For example, node1:1;node2:2,3 tells the
cluster to use port 1 for node1 and ports
2 and 3 for node2. If pcmk_host_check is
explicitly set to static-list, either this or
pcmk_host_list must be set. The port por-
tion of the map may contain special charac-
ters such as spaces if preceded by a backslash
(since 2.1.2).

pcmk_host_list text Comma-separated list of nodes that can be
targeted by this device (for example, node1,
node2,node3). If pcmk_host_check is
static-list, either this or pcmk_host_map
must be set.

pcmk_host_check text See Default Check
Type

The method Pacemaker should use to deter-
mine which nodes can be targeted by this de-
vice. Allowed values:

• static-list: targets are listed in the
pcmk_host_list or pcmk_host_map at-
tribute

• dynamic-list: query the device via
the agent’s list action

• status: query the device via the
agent’s status action

• none: assume the device can fence any
node

Continued on next page

72 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 19 – continued from previous page
Name Type Default Description
pcmk_delay_max duration 0s Enable a delay of no more than the time spec-

ified before executing fencing actions. Pace-
maker derives the overall delay by taking the
value of pcmk_delay_base and adding a ran-
dom delay value such that the sum is kept
below this maximum. This is sometimes used
in two-node clusters to ensure that the nodes
don’t fence each other at the same time.

pcmk_delay_base text 0s Enable a static delay before executing fenc-
ing actions. This can be used, for exam-
ple, in two-node clusters to ensure that the
nodes don’t fence each other, by having sep-
arate fencing resources with different values.
The node that is fenced with the shorter de-
lay will lose a fencing race. The overall de-
lay introduced by pacemaker is derived from
this value plus a random delay such that the
sum is kept below the maximum delay. A sin-
gle device can have different delays per node
using a host map (since 2.1.2), for example
node1:0s;node2:5s.

pcmk_action_limit integer 1 The maximum number of actions that can
be performed in parallel on this device.
A value of -1 means unlimited. Node
fencing actions initiated by the cluster (as
opposed to an administrator running the
stonith_admin tool or the fencer running re-
curring device monitors and status and list
commands) are additionally subject to the
concurrent-fencing cluster property.

pcmk_host_argument
text port if the fence

agent metadata ad-
vertises support for
it, otherwise plug if
supported, otherwise
none

Advanced use only. Which parameter should
be supplied to the fence agent to identify the
node to be fenced. A value of none tells the
cluster not to supply any additional parame-
ters.

pcmk_reboot_action
text reboot Advanced use only. The command to send

to the resource agent in order to reboot a
node. Some devices do not support the stan-
dard commands or may provide additional
ones. Use this to specify an alternate, device-
specific command.

pcmk_reboot_timeout
timeout 60s Advanced use only. Specify an alternate time-

out (in seconds) to use for reboot actions in-
stead of the value of stonith-timeout. Some
devices need much more or less time to com-
plete than normal. Use this to specify an al-
ternate, device-specific timeout.

Continued on next page

2.8. Fencing 73



Pacemaker Explained, Release 3.0.0

Table 19 – continued from previous page
Name Type Default Description

pcmk_reboot_retries
integer 2 Advanced use only. The maximum number of

times to retry the reboot command within
the timeout period. Some devices do not
support multiple connections, and operations
may fail if the device is busy with another
task, so Pacemaker will automatically retry
the operation, if there is time remaining. Use
this option to alter the number of times Pace-
maker retries before giving up.

pcmk_off_action text off Advanced use only. The command to send to
the resource agent in order to shut down a
node. Some devices do not support the stan-
dard commands or may provide additional
ones. Use this to specify an alternate, device-
specific command.

pcmk_off_timeout timeout 60s Advanced use only. Specify an alternate time-
out (in seconds) to use for off actions instead
of the value of stonith-timeout. Some de-
vices need much more or less time to complete
than normal. Use this to specify an alternate,
device-specific timeout.

pcmk_off_retries integer 2 Advanced use only. The maximum number of
times to retry the off command within the
timeout period. Some devices do not support
multiple connections, and operations may fail
if the device is busy with another task, so
Pacemaker will automatically retry the oper-
ation, if there is time remaining. Use this op-
tion to alter the number of times Pacemaker
retries before giving up.

pcmk_list_action text list Advanced use only. The command to send
to the resource agent in order to list nodes.
Some devices do not support the standard
commands or may provide additional ones.
Use this to specify an alternate, device-
specific command.

pcmk_list_timeout timeout 60s Advanced use only. Specify an alternate time-
out (in seconds) to use for list actions in-
stead of the value of stonith-timeout. Some
devices need much more or less time to com-
plete than normal. Use this to specify an al-
ternate, device-specific timeout.

pcmk_list_retries integer 2 Advanced use only. The maximum number of
times to retry the list command within the
timeout period. Some devices do not support
multiple connections, and operations may fail
if the device is busy with another task, so
Pacemaker will automatically retry the oper-
ation, if there is time remaining. Use this op-
tion to alter the number of times Pacemaker
retries before giving up.

Continued on next page

74 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 19 – continued from previous page
Name Type Default Description

pcmk_monitor_action
text monitor Advanced use only. The command to send

to the resource agent in order to report ex-
tended status. Some devices do not support
the standard commands or may provide addi-
tional ones. Use this to specify an alternate,
device-specific command.

pcmk_monitor_timeout
timeout 60s Advanced use only. Specify an alternate time-

out (in seconds) to use for monitor actions in-
stead of the value of stonith-timeout. Some
devices need much more or less time to com-
plete than normal. Use this to specify an al-
ternate, device-specific timeout.

pcmk_monitor_retries
integer 2 Advanced use only. The maximum number of

times to retry the monitor command within
the timeout period. Some devices do not
support multiple connections, and operations
may fail if the device is busy with another
task, so Pacemaker will automatically retry
the operation, if there is time remaining. Use
this option to alter the number of times Pace-
maker retries before giving up.

pcmk_status_action
text status Advanced use only. The command to send

to the resource agent in order to report sta-
tus. Some devices do not support the stan-
dard commands or may provide additional
ones. Use this to specify an alternate, device-
specific command.

pcmk_status_timeout
timeout 60s Advanced use only. Specify an alternate time-

out (in seconds) to use for status actions in-
stead of the value of stonith-timeout. Some
devices need much more or less time to com-
plete than normal. Use this to specify an al-
ternate, device-specific timeout.

pcmk_status_retries
integer 2 Advanced use only. The maximum number of

times to retry the status command within
the timeout period. Some devices do not
support multiple connections, and operations
may fail if the device is busy with another
task, so Pacemaker will automatically retry
the operation, if there is time remaining. Use
this option to alter the number of times Pace-
maker retries before giving up.

2.8.9 Default Check Type

If the user does not explicitly configure pcmk_host_check for a fence device, a default value appropriate to
other configured parameters will be used:

• If either pcmk_host_list or pcmk_host_map is configured, static-list will be used;

• otherwise, if the fence device supports the list action, and the first attempt at using list succeeds,
dynamic-list will be used;

2.8. Fencing 75



Pacemaker Explained, Release 3.0.0

• otherwise, if the fence device supports the status action, status will be used;

• otherwise, none will be used.

2.8.10 Unfencing

With fabric fencing (such as cutting network or shared disk access rather than power), it is expected that the
cluster will fence the node, and then a system administrator must manually investigate what went wrong,
correct any issues found, then reboot (or restart the cluster services on) the node.

Once the node reboots and rejoins the cluster, some fabric fencing devices require an explicit command
to restore the node’s access. This capability is called unfencing and is typically implemented as the fence
agent’s on command.

If any cluster resource has requires set to unfencing, then that resource will not be probed or started on
a node until that node has been unfenced.

2.8.11 Fencing and Quorum

In general, a cluster partition may execute fencing only if the partition has quorum, and the stonith-enabled
cluster property is set to true. However, there are exceptions:

• The requirements apply only to fencing initiated by Pacemaker. If an administrator initiates fencing
using the stonith_admin command, or an external application such as DLM initiates fencing using
Pacemaker’s C API, the requirements do not apply.

• A cluster partition without quorum is allowed to fence any active member of that partition. As a
corollary, this allows a no-quorum-policy of suicide to work.

• If the no-quorum-policy cluster property is set to ignore, then quorum is not required to execute
fencing of any node.

2.8.12 Fencing Timeouts

Fencing timeouts are complicated, since a single fencing operation can involve many steps, each of which
may have a separate timeout.

Fencing may be initiated in one of several ways:

• An administrator may initiate fencing using the stonith_admin tool, which has a --timeout option
(defaulting to 2 minutes) that will be used as the fence operation timeout.

• An external application such as DLM may initiate fencing using the Pacemaker C API. The application
will specify the fence operation timeout in this case, which might or might not be configurable by the
user.

• The cluster may initiate fencing itself. In this case, the stonith-timeout cluster property (defaulting
to 1 minute) will be used as the fence operation timeout.

However fencing is initiated, the initiator contacts Pacemaker’s fencer (pacemaker-fenced) to request fenc-
ing. This connection and request has its own timeout, separate from the fencing operation timeout, but
usually happens very quickly.

The fencer will contact all fencers in the cluster to ask what devices they have available to fence the target
node. The fence operation timeout will be used as the timeout for each of these queries.

Once a fencing device has been selected, the fencer will check whether any action-specific timeout has been
configured for the device, to use instead of the fence operation timeout. For example, if stonith-timeout

76 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

is 60 seconds, but the fencing device has pcmk_reboot_timeout configured as 90 seconds, then a timeout of
90 seconds will be used for reboot actions using that device.

A device may have retries configured, in which case the timeout applies across all attempts. For example, if
a device has pcmk_reboot_retries configured as 2, and the first reboot attempt fails, the second attempt
will only have whatever time is remaining in the action timeout after subtracting how much time the first
attempt used. This means that if the first attempt fails due to using the entire timeout, no further attempts
will be made. There is currently no way to configure a per-attempt timeout.

If more than one device is required to fence a target, whether due to failure of the first device or a fencing
topology with multiple devices configured for the target, each device will have its own separate action timeout.

For all of the above timeouts, the fencer will generally multiply the configured value by 1.2 to get an actual
value to use, to account for time needed by the fencer’s own processing.

Separate from the fencer’s timeouts, some fence agents have internal timeouts for individual steps of their
fencing process. These agents often have parameters to configure these timeouts, such as login-timeout,
shell-timeout, or power-timeout. Many such agents also have a disable-timeout parameter to ignore
their internal timeouts and just let Pacemaker handle the timeout. This causes a difference in retry behavior.
If disable-timeout is not set, and the agent hits one of its internal timeouts, it will report that as a failure
to Pacemaker, which can then retry. If disable-timeout is set, and Pacemaker hits a timeout for the agent,
then there will be no time remaining, and no retry will be done.

2.8.13 Fence Devices Dependent on Other Resources

In some cases, a fence device may require some other cluster resource (such as an IP address) to be active
in order to function properly.

This is obviously undesirable in general: fencing may be required when the depended-on resource is not active,
or fencing may be required because the node running the depended-on resource is no longer responding.

However, this may be acceptable under certain conditions:

• The dependent fence device should not be able to target any node that is allowed to run the depended-
on resource.

• The depended-on resource should not be disabled during production operation.

• The concurrent-fencing cluster property should be set to true. Otherwise, if both the node running
the depended-on resource and some node targeted by the dependent fence device need to be fenced, the
fencing of the node running the depended-on resource might be ordered first, making the second fencing
impossible and blocking further recovery. With concurrent fencing, the dependent fence device might
fail at first due to the depended-on resource being unavailable, but it will be retried and eventually
succeed once the resource is brought back up.

Even under those conditions, there is one unlikely problem scenario. The DC always schedules fencing of
itself after any other fencing needed, to avoid unnecessary repeated DC elections. If the dependent fence
device targets the DC, and both the DC and a different node running the depended-on resource need to be
fenced, the DC fencing will always fail and block further recovery. Note, however, that losing a DC node
entirely causes some other node to become DC and schedule the fencing, so this is only a risk when a stop
or other operation with on-fail set to fencing fails on the DC.

2.8.14 Configuring Fencing

Higher-level tools can provide simpler interfaces to this process, but using Pacemaker command-line tools,
this is how you could configure a fence device.

1. Find the correct driver:

2.8. Fencing 77



Pacemaker Explained, Release 3.0.0

# stonith_admin --list-installed

Note: You may have to install packages to make fence agents available on your host. Searching your
available packages for fence- is usually helpful. Ensure the packages providing the fence agents you
require are installed on every cluster node.

2. Find the required parameters associated with the device (replacing $AGENT_NAME with the name ob-
tained from the previous step):

# stonith_admin --metadata --agent $AGENT_NAME

3. Create a file called stonith.xml containing a primitive resource with a class of stonith, a type equal
to the agent name obtained earlier, and a parameter for each of the values returned in the previous
step.

4. If the device does not know how to fence nodes based on their uname, you may also need to set the
special pcmk_host_map parameter. See Special Instance Attributes for Fencing Resources for details.

5. If the device does not support the list command, you may also need to set the special pcmk_host_list
and/or pcmk_host_check parameters. See Special Instance Attributes for Fencing Resources for details.

6. If the device does not expect the target to be specified with the port parameter, you may also need to
set the special pcmk_host_argument parameter. See Special Instance Attributes for Fencing Resources
for details.

7. Upload it into the CIB using cibadmin:

# cibadmin --create --scope resources --xml-file stonith.xml

8. Set stonith-enabled to true:

# crm_attribute --type crm_config --name stonith-enabled --update true

9. Once the stonith resource is running, you can test it by executing the following, replacing $NODE_NAME
with the name of the node to fence (although you might want to stop the cluster on that machine
first):

# stonith_admin --reboot $NODE_NAME

Example Fencing Configuration

For this example, we assume we have a cluster node, pcmk-1, whose IPMI controller is reachable at the IP
address 192.0.2.1. The IPMI controller uses the username testuser and the password abc123.

1. Looking at what’s installed, we may see a variety of available agents:

# stonith_admin --list-installed

(... some output omitted ...)
fence_idrac
fence_ilo3
fence_ilo4
fence_ilo5
fence_imm

(continues on next page)

78 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

(continued from previous page)
fence_ipmilan
(... some output omitted ...)

Perhaps after some reading some man pages and doing some Internet searches, we might decide
fence_ipmilan is our best choice.

2. Next, we would check what parameters fence_ipmilan provides:

# stonith_admin --metadata -a fence_ipmilan

<resource-agent name="fence_ipmilan" shortdesc="Fence agent for IPMI">
<symlink name="fence_ilo3" shortdesc="Fence agent for HP iLO3"/>
<symlink name="fence_ilo4" shortdesc="Fence agent for HP iLO4"/>
<symlink name="fence_ilo5" shortdesc="Fence agent for HP iLO5"/>
<symlink name="fence_imm" shortdesc="Fence agent for IBM Integrated Management Module"/>
<symlink name="fence_idrac" shortdesc="Fence agent for Dell iDRAC"/>
<longdesc>fence_ipmilan is an I/O Fencing agentwhich can be used with machines controlled␣

↪→by IPMI.This agent calls support software ipmitool (http://ipmitool.sf.net/). WARNING! This␣
↪→fence agent might report success before the node is powered off. You should use -m/method␣
↪→onoff if your fence device works correctly with that option.</longdesc>
<vendor-url/>
<parameters>

<parameter name="action" unique="0" required="0">
<getopt mixed="-o, --action=[action]"/>
<content type="string" default="reboot"/>
<shortdesc lang="en">Fencing action</shortdesc>

</parameter>
<parameter name="auth" unique="0" required="0">
<getopt mixed="-A, --auth=[auth]"/>
<content type="select">
<option value="md5"/>
<option value="password"/>
<option value="none"/>

</content>
<shortdesc lang="en">IPMI Lan Auth type.</shortdesc>

</parameter>
<parameter name="cipher" unique="0" required="0">
<getopt mixed="-C, --cipher=[cipher]"/>
<content type="string"/>
<shortdesc lang="en">Ciphersuite to use (same as ipmitool -C parameter)</shortdesc>

</parameter>
<parameter name="hexadecimal_kg" unique="0" required="0">
<getopt mixed="--hexadecimal-kg=[key]"/>
<content type="string"/>
<shortdesc lang="en">Hexadecimal-encoded Kg key for IPMIv2 authentication</shortdesc>

</parameter>
<parameter name="ip" unique="0" required="0" obsoletes="ipaddr">
<getopt mixed="-a, --ip=[ip]"/>
<content type="string"/>
<shortdesc lang="en">IP address or hostname of fencing device</shortdesc>

</parameter>
<parameter name="ipaddr" unique="0" required="0" deprecated="1">
<getopt mixed="-a, --ip=[ip]"/>
<content type="string"/>
<shortdesc lang="en">IP address or hostname of fencing device</shortdesc>

</parameter>
(continues on next page)

2.8. Fencing 79



Pacemaker Explained, Release 3.0.0

(continued from previous page)
<parameter name="ipport" unique="0" required="0">

<getopt mixed="-u, --ipport=[port]"/>
<content type="integer" default="623"/>
<shortdesc lang="en">TCP/UDP port to use for connection with device</shortdesc>

</parameter>
<parameter name="lanplus" unique="0" required="0">
<getopt mixed="-P, --lanplus"/>
<content type="boolean" default="0"/>
<shortdesc lang="en">Use Lanplus to improve security of connection</shortdesc>

</parameter>
<parameter name="login" unique="0" required="0" deprecated="1">
<getopt mixed="-l, --username=[name]"/>
<content type="string"/>
<shortdesc lang="en">Login name</shortdesc>

</parameter>
<parameter name="method" unique="0" required="0">
<getopt mixed="-m, --method=[method]"/>
<content type="select" default="onoff">
<option value="onoff"/>
<option value="cycle"/>

</content>
<shortdesc lang="en">Method to fence</shortdesc>

</parameter>
<parameter name="passwd" unique="0" required="0" deprecated="1">
<getopt mixed="-p, --password=[password]"/>
<content type="string"/>
<shortdesc lang="en">Login password or passphrase</shortdesc>

</parameter>
<parameter name="passwd_script" unique="0" required="0" deprecated="1">
<getopt mixed="-S, --password-script=[script]"/>
<content type="string"/>
<shortdesc lang="en">Script to run to retrieve password</shortdesc>

</parameter>
<parameter name="password" unique="0" required="0" obsoletes="passwd">
<getopt mixed="-p, --password=[password]"/>
<content type="string"/>
<shortdesc lang="en">Login password or passphrase</shortdesc>

</parameter>
<parameter name="password_script" unique="0" required="0" obsoletes="passwd_script">
<getopt mixed="-S, --password-script=[script]"/>
<content type="string"/>
<shortdesc lang="en">Script to run to retrieve password</shortdesc>

</parameter>
<parameter name="plug" unique="0" required="0" obsoletes="port">
<getopt mixed="-n, --plug=[ip]"/>
<content type="string"/>
<shortdesc lang="en">IP address or hostname of fencing device (together with --port-as-

↪→ip)</shortdesc>
</parameter>
<parameter name="port" unique="0" required="0" deprecated="1">

<getopt mixed="-n, --plug=[ip]"/>
<content type="string"/>
<shortdesc lang="en">IP address or hostname of fencing device (together with --port-as-

↪→ip)</shortdesc>
</parameter>
<parameter name="privlvl" unique="0" required="0">

(continues on next page)

80 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

(continued from previous page)
<getopt mixed="-L, --privlvl=[level]"/>
<content type="select" default="administrator">
<option value="callback"/>
<option value="user"/>
<option value="operator"/>
<option value="administrator"/>

</content>
<shortdesc lang="en">Privilege level on IPMI device</shortdesc>

</parameter>
<parameter name="target" unique="0" required="0">
<getopt mixed="--target=[targetaddress]"/>
<content type="string"/>
<shortdesc lang="en">Bridge IPMI requests to the remote target address</shortdesc>

</parameter>
<parameter name="username" unique="0" required="0" obsoletes="login">
<getopt mixed="-l, --username=[name]"/>
<content type="string"/>
<shortdesc lang="en">Login name</shortdesc>

</parameter>
<parameter name="quiet" unique="0" required="0">
<getopt mixed="-q, --quiet"/>
<content type="boolean"/>
<shortdesc lang="en">Disable logging to stderr. Does not affect --verbose or --debug-

↪→file or logging to syslog.</shortdesc>
</parameter>
<parameter name="verbose" unique="0" required="0">

<getopt mixed="-v, --verbose"/>
<content type="boolean"/>
<shortdesc lang="en">Verbose mode</shortdesc>

</parameter>
<parameter name="debug" unique="0" required="0" deprecated="1">
<getopt mixed="-D, --debug-file=[debugfile]"/>
<content type="string"/>
<shortdesc lang="en">Write debug information to given file</shortdesc>

</parameter>
<parameter name="debug_file" unique="0" required="0" obsoletes="debug">
<getopt mixed="-D, --debug-file=[debugfile]"/>
<content type="string"/>
<shortdesc lang="en">Write debug information to given file</shortdesc>

</parameter>
<parameter name="version" unique="0" required="0">
<getopt mixed="-V, --version"/>
<content type="boolean"/>
<shortdesc lang="en">Display version information and exit</shortdesc>

</parameter>
<parameter name="help" unique="0" required="0">
<getopt mixed="-h, --help"/>
<content type="boolean"/>
<shortdesc lang="en">Display help and exit</shortdesc>

</parameter>
<parameter name="delay" unique="0" required="0">
<getopt mixed="--delay=[seconds]"/>
<content type="second" default="0"/>
<shortdesc lang="en">Wait X seconds before fencing is started</shortdesc>

</parameter>
<parameter name="ipmitool_path" unique="0" required="0">

(continues on next page)

2.8. Fencing 81



Pacemaker Explained, Release 3.0.0

(continued from previous page)
<getopt mixed="--ipmitool-path=[path]"/>
<content type="string" default="/usr/bin/ipmitool"/>
<shortdesc lang="en">Path to ipmitool binary</shortdesc>

</parameter>
<parameter name="login_timeout" unique="0" required="0">

<getopt mixed="--login-timeout=[seconds]"/>
<content type="second" default="5"/>
<shortdesc lang="en">Wait X seconds for cmd prompt after login</shortdesc>

</parameter>
<parameter name="port_as_ip" unique="0" required="0">
<getopt mixed="--port-as-ip"/>
<content type="boolean"/>
<shortdesc lang="en">Make "port/plug" to be an alias to IP address</shortdesc>

</parameter>
<parameter name="power_timeout" unique="0" required="0">

<getopt mixed="--power-timeout=[seconds]"/>
<content type="second" default="20"/>
<shortdesc lang="en">Test X seconds for status change after ON/OFF</shortdesc>

</parameter>
<parameter name="power_wait" unique="0" required="0">
<getopt mixed="--power-wait=[seconds]"/>
<content type="second" default="2"/>
<shortdesc lang="en">Wait X seconds after issuing ON/OFF</shortdesc>

</parameter>
<parameter name="shell_timeout" unique="0" required="0">

<getopt mixed="--shell-timeout=[seconds]"/>
<content type="second" default="3"/>
<shortdesc lang="en">Wait X seconds for cmd prompt after issuing command</shortdesc>

</parameter>
<parameter name="retry_on" unique="0" required="0">
<getopt mixed="--retry-on=[attempts]"/>
<content type="integer" default="1"/>
<shortdesc lang="en">Count of attempts to retry power on</shortdesc>

</parameter>
<parameter name="sudo" unique="0" required="0" deprecated="1">
<getopt mixed="--use-sudo"/>
<content type="boolean"/>
<shortdesc lang="en">Use sudo (without password) when calling 3rd party software</

↪→shortdesc>
</parameter>
<parameter name="use_sudo" unique="0" required="0" obsoletes="sudo">

<getopt mixed="--use-sudo"/>
<content type="boolean"/>
<shortdesc lang="en">Use sudo (without password) when calling 3rd party software</

↪→shortdesc>
</parameter>
<parameter name="sudo_path" unique="0" required="0">

<getopt mixed="--sudo-path=[path]"/>
<content type="string" default="/usr/bin/sudo"/>
<shortdesc lang="en">Path to sudo binary</shortdesc>

</parameter>
</parameters>
<actions>

<action name="on" automatic="0"/>
<action name="off"/>
<action name="reboot"/>

(continues on next page)

82 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

(continued from previous page)
<action name="status"/>
<action name="monitor"/>
<action name="metadata"/>
<action name="manpage"/>
<action name="validate-all"/>
<action name="diag"/>
<action name="stop" timeout="20s"/>
<action name="start" timeout="20s"/>

</actions>
</resource-agent>

Once we’ve decided what parameter values we think we need, it is a good idea to run the fence agent’s
status action manually, to verify that our values work correctly:

# fence_ipmilan --lanplus -a 192.0.2.1 -l testuser -p abc123 -o status

Chassis Power is on

3. Based on that, we might create a fencing resource configuration like this in stonith.xml (or any file
name, just use the same name with cibadmin later):

<primitive id="Fencing-pcmk-1" class="stonith" type="fence_ipmilan" >
<instance_attributes id="Fencing-params" >
<nvpair id="Fencing-lanplus" name="lanplus" value="1" />
<nvpair id="Fencing-ip" name="ip" value="192.0.2.1" />
<nvpair id="Fencing-password" name="password" value="testuser" />
<nvpair id="Fencing-username" name="username" value="abc123" />

</instance_attributes>
<operations >

<op id="Fencing-monitor-10m" interval="10m" name="monitor" timeout="300s" />
</operations>

</primitive>

Note: Even though the man page shows that the action parameter is supported, we do not provide
that in the resource configuration. Pacemaker will supply an appropriate action whenever the fence
device must be used.

4. In this case, we don’t need to configure pcmk_host_map because fence_ipmilan ignores the target
node name and instead uses its ip parameter to know how to contact the IPMI controller.

5. We do need to let Pacemaker know which cluster node can be fenced by this device, since
fence_ipmilan doesn’t support the list action. Add a line like this to the agent’s instance attributes:

<nvpair id="Fencing-pcmk_host_list" name="pcmk_host_list" value="pcmk-1" />

6. We don’t need to configure pcmk_host_argument since ip is all the fence agent needs (it ignores the
target name).

7. Make the configuration active:

# cibadmin --create --scope resources --xml-file stonith.xml

8. Set stonith-enabled to true (this only has to be done once):

2.8. Fencing 83



Pacemaker Explained, Release 3.0.0

# crm_attribute --type crm_config --name stonith-enabled --update true

9. Since our cluster is still in testing, we can reboot pcmk-1 without bothering anyone, so we’ll test our
fencing configuration by running this from one of the other cluster nodes:

# stonith_admin --reboot pcmk-1

Then we will verify that the node did, in fact, reboot.

We can repeat that process to create a separate fencing resource for each node.

With some other fence device types, a single fencing resource is able to be used for all nodes. In fact, we
could do that with fence_ipmilan, using the port-as-ip parameter along with pcmk_host_map. Either
approach is fine.

2.8.15 Fencing Topologies

Pacemaker supports fencing nodes with multiple devices through a feature called fencing topologies. Fencing
topologies may be used to provide alternative devices in case one fails, or to require multiple devices to all
be executed successfully in order to consider the node successfully fenced, or even a combination of the two.

Create the individual devices as you normally would, then define one or more fencing-level entries in the
fencing-topology section of the configuration.

• Each fencing level is attempted in order of ascending index. Allowed values are 1 through 9.

• If a device fails, processing terminates for the current level. No further devices in that level are
exercised, and the next level is attempted instead.

• If the operation succeeds for all the listed devices in a level, the level is deemed to have passed.

• The operation is finished when a level has passed (success), or all levels have been attempted (failed).

• If the operation failed, the next step is determined by the scheduler and/or the controller.

Some possible uses of topologies include:

• Try on-board IPMI, then an intelligent power switch if that fails

• Try fabric fencing of both disk and network, then fall back to power fencing if either fails

• Wait up to a certain time for a kernel dump to complete, then cut power to the node

Table 20: Attributes of a fencing-level Element
Attribute Description
id A unique name for this element (required)
target The name of a single node to which this level applies
target-pattern An extended regular expression (as defined in POSIX) matching the names of nodes

to which this level applies
target-attribute The name of a node attribute that is set (to target-value) for nodes to which this

level applies
target-value The node attribute value (of target-attribute) that is set for nodes to which this

level applies
index The order in which to attempt the levels. Levels are attempted in ascending order

until one succeeds. Valid values are 1 through 9.
devices A comma-separated list of devices that must all be tried for this level

84 Chapter 2. Table of Contents

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_04


Pacemaker Explained, Release 3.0.0

Note: Fencing topology with different devices for different nodes

<cib crm_feature_set="3.6.0" validate-with="pacemaker-3.5" admin_epoch="1" epoch="0" num_updates="0
↪→">
<configuration>
...
<fencing-topology>

<!-- For pcmk-1, try poison-pill and fail back to power -->
<fencing-level id="f-p1.1" target="pcmk-1" index="1" devices="poison-pill"/>
<fencing-level id="f-p1.2" target="pcmk-1" index="2" devices="power"/>

<!-- For pcmk-2, try disk and network, and fail back to power -->
<fencing-level id="f-p2.1" target="pcmk-2" index="1" devices="disk,network"/>
<fencing-level id="f-p2.2" target="pcmk-2" index="2" devices="power"/>

</fencing-topology>
...

<configuration>
<status/>

</cib>

Example Dual-Layer, Dual-Device Fencing Topologies

The following example illustrates an advanced use of fencing-topology in a cluster with the following
properties:

• 2 nodes (prod-mysql1 and prod-mysql2)

• the nodes have IPMI controllers reachable at 192.0.2.1 and 192.0.2.2

• the nodes each have two independent Power Supply Units (PSUs) connected to two independent Power
Distribution Units (PDUs) reachable at 198.51.100.1 (port 10 and port 11) and 203.0.113.1 (port 10
and port 11)

• fencing via the IPMI controller uses the fence_ipmilan agent (1 fence device per controller, with each
device targeting a separate node)

• fencing via the PDUs uses the fence_apc_snmp agent (1 fence device per PDU, with both devices
targeting both nodes)

• a random delay is used to lessen the chance of a “death match”

• fencing topology is set to try IPMI fencing first then dual PDU fencing if that fails

In a node failure scenario, Pacemaker will first select fence_ipmilan to try to kill the faulty node. Using
the fencing topology, if that method fails, it will then move on to selecting fence_apc_snmp twice (once for
the first PDU, then again for the second PDU).

The fence action is considered successful only if both PDUs report the required status. If any of them fails,
fencing loops back to the first fencing method, fence_ipmilan, and so on, until the node is fenced or the
fencing action is cancelled.

Note: First fencing method: single IPMI device per target

Each cluster node has it own dedicated IPMI controller that can be contacted for fencing using the following
primitives:

2.8. Fencing 85



Pacemaker Explained, Release 3.0.0

<primitive class="stonith" id="fence_prod-mysql1_ipmi" type="fence_ipmilan">
<instance_attributes id="fence_prod-mysql1_ipmi-instance_attributes">
<nvpair id="fence_prod-mysql1_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.1"/

↪→>
<nvpair id="fence_prod-mysql1_ipmi-instance_attributes-login" name="login" value="fencing"/>
<nvpair id="fence_prod-mysql1_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/>
<nvpair id="fence_prod-mysql1_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/>
<nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list"␣

↪→value="prod-mysql1"/>
<nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_delay_max" name="pcmk_delay_max"␣

↪→value="8s"/>
</instance_attributes>

</primitive>
<primitive class="stonith" id="fence_prod-mysql2_ipmi" type="fence_ipmilan">

<instance_attributes id="fence_prod-mysql2_ipmi-instance_attributes">
<nvpair id="fence_prod-mysql2_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.2"/

↪→>
<nvpair id="fence_prod-mysql2_ipmi-instance_attributes-login" name="login" value="fencing"/>
<nvpair id="fence_prod-mysql2_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/>
<nvpair id="fence_prod-mysql2_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/>
<nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list"␣

↪→value="prod-mysql2"/>
<nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_delay_max" name="pcmk_delay_max"␣

↪→value="8s"/>
</instance_attributes>

</primitive>

Note: Second fencing method: dual PDU devices

Each cluster node also has 2 distinct power supplies controlled by 2 distinct PDUs:

• Node 1: PDU 1 port 10 and PDU 2 port 10

• Node 2: PDU 1 port 11 and PDU 2 port 11

The matching fencing agents are configured as follows:

<primitive class="stonith" id="fence_apc1" type="fence_apc_snmp">
<instance_attributes id="fence_apc1-instance_attributes">
<nvpair id="fence_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/>
<nvpair id="fence_apc1-instance_attributes-login" name="login" value="fencing"/>
<nvpair id="fence_apc1-instance_attributes-passwd" name="passwd" value="fencing"/>
<nvpair id="fence_apc1-instance_attributes-pcmk_host_list"

name="pcmk_host_map" value="prod-mysql1:10;prod-mysql2:11"/>
<nvpair id="fence_apc1-instance_attributes-pcmk_delay_max" name="pcmk_delay_max" value="8s"/>

</instance_attributes>
</primitive>
<primitive class="stonith" id="fence_apc2" type="fence_apc_snmp">
<instance_attributes id="fence_apc2-instance_attributes">
<nvpair id="fence_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/>
<nvpair id="fence_apc2-instance_attributes-login" name="login" value="fencing"/>
<nvpair id="fence_apc2-instance_attributes-passwd" name="passwd" value="fencing"/>
<nvpair id="fence_apc2-instance_attributes-pcmk_host_list"

name="pcmk_host_map" value="prod-mysql1:10;prod-mysql2:11"/>
<nvpair id="fence_apc2-instance_attributes-pcmk_delay_max" name="pcmk_delay_max" value="8s"/>

</instance_attributes>
</primitive>

86 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Note: Fencing topology

Now that all the fencing resources are defined, it’s time to create the right topology. We want to first fence
using IPMI and if that does not work, fence both PDUs to effectively and surely kill the node.

<fencing-topology>
<fencing-level id="level-1-1" target="prod-mysql1" index="1" devices="fence_prod-mysql1_ipmi" />
<fencing-level id="level-1-2" target="prod-mysql1" index="2" devices="fence_apc1,fence_apc2" />
<fencing-level id="level-2-1" target="prod-mysql2" index="1" devices="fence_prod-mysql2_ipmi" />
<fencing-level id="level-2-2" target="prod-mysql2" index="2" devices="fence_apc1,fence_apc2" />

</fencing-topology>

In fencing-topology, the lowest index value for a target determines its first fencing method.

2.8.16 Remapping Reboots

When the cluster needs to reboot a node, whether because stonith-action is reboot or because a reboot
was requested externally (such as by stonith_admin --reboot), it will remap that to other commands in
two cases:

• If the chosen fencing device does not support the reboot command, the cluster will ask it to perform
off instead.

• If a fencing topology level with multiple devices must be executed, the cluster will ask all the devices
to perform off, then ask the devices to perform on.

To understand the second case, consider the example of a node with redundant power supplies connected
to intelligent power switches. Rebooting one switch and then the other would have no effect on the node.
Turning both switches off, and then on, actually reboots the node.

In such a case, the fencing operation will be treated as successful as long as the off commands succeed,
because then it is safe for the cluster to recover any resources that were on the node. Timeouts and errors
in the on phase will be logged but ignored.

When a reboot operation is remapped, any action-specific timeout for the remapped action will be used (for
example, pcmk_off_timeout will be used when executing the off command, not pcmk_reboot_timeout).

2.9 Collective Resources

Pacemaker supports several types of collective resources, which consist of multiple, related resource instances.

2.9.1 Groups - A Syntactic Shortcut

One of the most common elements of a cluster is a set of resources that need to be located together, start
sequentially, and stop in the reverse order. To simplify this configuration, we support the concept of groups.

A group of two primitive resources

2.9. Collective Resources 87



Pacemaker Explained, Release 3.0.0

<group id="shortcut">
<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
<instance_attributes id="params-public-ip">

<nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
</instance_attributes>
</primitive>
<primitive id="Email" class="systemd" type="exim"/>

</group>

Although the example above contains only two resources, there is no limit to the number of resources a
group can contain. The example is also sufficient to explain the fundamental properties of a group:

• Resources are started in the order they appear in (Public-IP first, then Email)

• Resources are stopped in the reverse order to which they appear in (Email first, then Public-IP)

If a resource in the group can’t run anywhere, then nothing after that is allowed to run, too.

• If Public-IP can’t run anywhere, neither can Email;

• but if Email can’t run anywhere, this does not affect Public-IP in any way

The group above is logically equivalent to writing:

How the cluster sees a group resource

<configuration>
<resources>
<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
<instance_attributes id="params-public-ip">

<nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
</instance_attributes>

</primitive>
<primitive id="Email" class="systemd" type="exim"/>
</resources>
<constraints>

<rsc_colocation id="xxx" rsc="Email" with-rsc="Public-IP" score="INFINITY"/>
<rsc_order id="yyy" first="Public-IP" then="Email"/>

</constraints>
</configuration>

Obviously as the group grows bigger, the reduced configuration effort can become significant.

Another (typical) example of a group is a DRBD volume, the filesystem mount, an IP address, and an
application that uses them.

Group Properties

Table 21: Properties of a Group Resource
Field Description
id

A unique name for the group
description

Arbitrary text for user’s use (ignored by Pacemaker)

88 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Group Options

Groups inherit the priority, target-role, and is-managed properties from primitive resources. See Re-
source Options for information about those properties.

Group Instance Attributes

Groups have no instance attributes. However, any that are set for the group object will be inherited by the
group’s children.

Group Contents

Groups may only contain a collection of cluster resources (see Resource Properties). To refer to a child of a
group resource, just use the child’s id instead of the group’s.

Group Constraints

Although it is possible to reference a group’s children in constraints, it is usually preferable to reference the
group itself.

Some constraints involving groups

<constraints>
<rsc_location id="group-prefers-node1" rsc="shortcut" node="node1" score="500"/>
<rsc_colocation id="webserver-with-group" rsc="Webserver" with-rsc="shortcut"/>
<rsc_order id="start-group-then-webserver" first="Webserver" then="shortcut"/>

</constraints>

Group Stickiness

Stickiness, the measure of how much a resource wants to stay where it is, is additive in groups. Every
active resource of the group will contribute its stickiness value to the group’s total. So if the default
resource-stickiness is 100, and a group has seven members, five of which are active, then the group as a
whole will prefer its current location with a score of 500.

2.9.2 Clones - Resources That Can Have Multiple Active Instances

Clone resources are resources that can have more than one copy active at the same time. This allows you,
for example, to run a copy of a daemon on every node. You can clone any primitive or group resource1.

Anonymous versus Unique Clones

A clone resource is configured to be either anonymous or globally unique.

Anonymous clones are the simplest. These behave completely identically everywhere they are running.
Because of this, there can be only one instance of an anonymous clone active per node.

1 Of course, the service must support running multiple instances.

2.9. Collective Resources 89



Pacemaker Explained, Release 3.0.0

The instances of globally unique clones are distinct entities. All instances are launched identically, but one
instance of the clone is not identical to any other instance, whether running on the same node or a different
node. As an example, a cloned IP address can use special kernel functionality such that each instance handles
a subset of requests for the same IP address.

Promotable clones

If a clone is promotable, its instances can perform a special role that Pacemaker will manage via the promote
and demote actions of the resource agent.

Services that support such a special role have various terms for the special role and the default role: primary
and secondary, master and replica, controller and worker, etc. Pacemaker uses the terms promoted and
unpromoted to be agnostic to what the service calls them or what they do.

All that Pacemaker cares about is that an instance comes up in the unpromoted role when started, and the
resource agent supports the promote and demote actions to manage entering and exiting the promoted role.

Clone Properties

Table 22: Properties of a Clone Resource
Field Description
id

A unique name for the clone
description

Arbitrary text for user’s use (ignored by Pacemaker)

Clone Options

Options inherited from primitive resources: priority, target-role, is-managed

Table 23: Clone-specific configuration options
Field Default Description
globally-unique true if clone-

node-max is
greater than 1
(since 3.0.0),
otherwise false

If true, each clone instance performs a distinct function, such
that a single node can run more than one instance at the same
time

clone-max 0 The maximum number of clone instances that can be started
across the entire cluster. If 0, the number of nodes in the
cluster will be used.

clone-node-max 1 If the clone is globally unique, this is the maximum number of
clone instances that can be started on a single node

clone-min 0 Require at least this number of clone instances to be runnable
before allowing resources depending on the clone to be
runnable. A value of 0 means require all clone instances to
be runnable.

notify false Call the resource agent’s notify action for all active instances,
before and after starting or stopping any clone instance. The
resource agent must support this action. Allowed values:
false, true

Continued on next page

90 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 23 – continued from previous page
Field Default Description
ordered false If true, clone instances must be started sequentially instead

of in parallel. Allowed values: false, true
interleave false When this clone is ordered relative to another clone, if this

option is false (the default), the ordering is relative to all
instances of the other clone, whereas if this option is true,
the ordering is relative only to instances on the same node.
Allowed values: false, true

promotable false If true, clone instances can perform a special role that Pace-
maker will manage via the resource agent’s promote and de-
mote actions. The resource agent must support these actions.
Allowed values: false, true

promoted-max 1 If promotable is true, the number of instances that can be
promoted at one time across the entire cluster

promoted-node-
max

1 If the clone is promotable and globally unique, this is the num-
ber of instances that can be promoted at one time on a single
node (up to clone-node-max)

Note: Deprecated Terminology

In older documentation and online examples, you may see promotable clones referred to as multi-state,
stateful, or master/slave; these mean the same thing as promotable. Certain syntax is supported for backward
compatibility, but is deprecated and will be removed in a future version:

• Using the master-max meta-attribute instead of promoted-max

• Using the master-node-max meta-attribute instead of promoted-node-max

• Using Master as a role name instead of Promoted

• Using Slave as a role name instead of Unpromoted

Clone Contents

Clones must contain exactly one primitive or group resource.

A clone that runs a web server on all nodes

<clone id="apache-clone">
<primitive id="apache" class="systemd" type="httpd">

<operations>
<op id="apache-monitor" name="monitor" interval="30"/>

</operations>
</primitive>

</clone>

Warning: You should never reference the name of a clone’s child (the primitive or group resource being
cloned). If you think you need to do this, you probably need to re-evaluate your design.

2.9. Collective Resources 91



Pacemaker Explained, Release 3.0.0

Clone Instance Attribute

Clones have no instance attributes; however, any that are set here will be inherited by the clone’s child.

Clone Constraints

In most cases, a clone will have a single instance on each active cluster node. If this is not the case, you
can indicate which nodes the cluster should preferentially assign copies to with resource location constraints.
These constraints are written no differently from those for primitive resources except that the clone’s id is
used.

Some constraints involving clones

<constraints>
<rsc_location id="clone-prefers-node1" rsc="apache-clone" node="node1" score="500"/>
<rsc_colocation id="stats-with-clone" rsc="apache-stats" with="apache-clone"/>
<rsc_order id="start-clone-then-stats" first="apache-clone" then="apache-stats"/>

</constraints>

Ordering constraints behave slightly differently for clones. In the example above, apache-stats will wait
until all copies of apache-clone that need to be started have done so before being started itself. Only if no
copies can be started will apache-stats be prevented from being active. Additionally, the clone will wait
for apache-stats to be stopped before stopping itself.

Colocation of a primitive or group resource with a clone means that the resource can run on any node with
an active instance of the clone. The cluster will choose an instance based on where the clone is running and
the resource’s own location preferences.

Colocation between clones is also possible. If one clone A is colocated with another clone B, the set of
allowed locations for A is limited to nodes on which B is (or will be) active. Placement is then performed
normally.

Promotable Clone Constraints

For promotable clone resources, the first-action and/or then-action fields for ordering constraints may
be set to promote or demote to constrain the promoted role, and colocation constraints may contain rsc-role
and/or with-rsc-role fields.

Constraints involving promotable clone resources

<constraints>
<rsc_location id="db-prefers-node1" rsc="database" node="node1" score="500"/>
<rsc_colocation id="backup-with-db-unpromoted" rsc="backup"
with-rsc="database" with-rsc-role="Unpromoted"/>

<rsc_colocation id="myapp-with-db-promoted" rsc="myApp"
with-rsc="database" with-rsc-role="Promoted"/>

<rsc_order id="start-db-before-backup" first="database" then="backup"/>
<rsc_order id="promote-db-then-app" first="database" first-action="promote"

then="myApp" then-action="start"/>
</constraints>

92 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

In the example above, myApp will wait until one of the database copies has been started and promoted
before being started itself on the same node. Only if no copies can be promoted will myApp be prevented
from being active. Additionally, the cluster will wait for myApp to be stopped before demoting the database.

Colocation of a primitive or group resource with a promotable clone resource means that it can run on
any node with an active instance of the promotable clone resource that has the specified role (Promoted or
Unpromoted). In the example above, the cluster will choose a location based on where database is running in
the promoted role, and if there are multiple promoted instances it will also factor in myApp’s own location
preferences when deciding which location to choose.

Colocation with regular clones and other promotable clone resources is also possible. In such cases, the set of
allowed locations for the rsc clone is (after role filtering) limited to nodes on which the with-rsc promotable
clone resource is (or will be) in the specified role. Placement is then performed as normal.

Using Promotable Clone Resources in Colocation Sets

When a promotable clone is used in a resource set inside a colocation constraint, the resource set may take
a role attribute.

In the following example, an instance of B may be promoted only on a node where A is in the promoted
role. Additionally, resources C and D must be located on a node where both A and B are promoted.

Colocate C and D with A’s and B’s promoted instances

<constraints>
<rsc_colocation id="coloc-1" score="INFINITY" >
<resource_set id="colocated-set-example-1" sequential="true" role="Promoted">

<resource_ref id="A"/>
<resource_ref id="B"/>

</resource_set>
<resource_set id="colocated-set-example-2" sequential="true">
<resource_ref id="C"/>
<resource_ref id="D"/>

</resource_set>
</rsc_colocation>

</constraints>

Using Promotable Clone Resources in Ordered Sets

When a promotable clone is used in a resource set inside an ordering constraint, the resource set may take
an action attribute.

Start C and D after first promoting A and B

<constraints>
<rsc_order id="order-1" score="INFINITY" >
<resource_set id="ordered-set-1" sequential="true" action="promote">

<resource_ref id="A"/>
<resource_ref id="B"/>

</resource_set>
<resource_set id="ordered-set-2" sequential="true" action="start">
<resource_ref id="C"/>
<resource_ref id="D"/>

</resource_set>
</rsc_order>

</constraints>2.9. Collective Resources 93



Pacemaker Explained, Release 3.0.0

In the above example, B cannot be promoted until A has been promoted. Additionally, resources C and D
must wait until A and B have been promoted before they can start.

Clone Stickiness

To achieve stable assignments, clones are slightly sticky by default. If no value for resource-stickiness
is provided, the clone will use a value of 1. Being a small value, it causes minimal disturbance to the score
calculations of other resources but is enough to prevent Pacemaker from needlessly moving instances around
the cluster.

Note: For globally unique clones, this may result in multiple instances of the clone staying on a single
node, even after another eligible node becomes active (for example, after being put into standby mode then
made active again). If you do not want this behavior, specify a resource-stickiness of 0 for the clone
temporarily and let the cluster adjust, then set it back to 1 if you want the default behavior to apply again.

Important: If resource-stickiness is set in the rsc_defaults section, it will apply to clone instances
as well. This means an explicit resource-stickiness of 0 in rsc_defaults works differently from the
implicit default used when resource-stickiness is not specified.

Monitoring Promotable Clone Resources

The usual monitor actions are insufficient to monitor a promotable clone resource, because Pacemaker needs
to verify not only that the resource is active, but also that its actual role matches its intended one.

Define two monitoring actions: the usual one will cover the unpromoted role, and an additional one with
role="Promoted" will cover the promoted role.

Monitoring both states of a promotable clone resource

<clone id="myPromotableRsc">
<meta_attributes id="myPromotableRsc-meta">

<nvpair name="promotable" value="true"/>
</meta_attributes>
<primitive id="myRsc" class="ocf" type="myApp" provider="myCorp">
<operations>
<op id="public-ip-unpromoted-check" name="monitor" interval="60"/>
<op id="public-ip-promoted-check" name="monitor" interval="61" role="Promoted"/>

</operations>
</primitive>

</clone>

Important: It is crucial that every monitor operation has a different interval! Pacemaker currently
differentiates between operations only by resource and interval; so if (for example) a promotable clone
resource had the same monitor interval for both roles, Pacemaker would ignore the role when checking the
status – which would cause unexpected return codes, and therefore unnecessary complications.

94 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Determining Which Instance is Promoted

Pacemaker can choose a promotable clone instance to be promoted in one of two ways:

• Promotion scores: These are node attributes set via the crm_attribute command using the
--promotion option, which generally would be called by the resource agent’s start action if it supports
promotable clones. This tool automatically detects both the resource and host, and should be used
to set a preference for being promoted. Based on this, promoted-max, and promoted-node-max, the
instance(s) with the highest preference will be promoted.

• Constraints: Location constraints can indicate which nodes are most preferred to be promoted.

Explicitly preferring node1 to be promoted

<rsc_location id="promoted-location" rsc="myPromotableRsc">
<rule id="promoted-rule" score="100" role="Promoted">
<expression id="promoted-exp" attribute="#uname" operation="eq" value="node1"/>

</rule>
</rsc_location>

2.9.3 Bundles - Containerized Resources

Pacemaker supports a special syntax for launching a service inside a container with any infrastructure it
requires: the bundle.

Pacemaker bundles support Docker and podman (since 2.0.1) container technologies.2

A bundle for a containerized web server

<bundle id="httpd-bundle">
<podman image="pcmk:http" replicas="3"/>
<network ip-range-start="192.168.122.131"

host-netmask="24"
host-interface="eth0">

<port-mapping id="httpd-port" port="80"/>
</network>

<storage>
<storage-mapping id="httpd-syslog"

source-dir="/dev/log"
target-dir="/dev/log"
options="rw"/>

<storage-mapping id="httpd-root"
source-dir="/srv/html"
target-dir="/var/www/html"
options="rw,Z"/>

<storage-mapping id="httpd-logs"
source-dir-root="/var/log/pacemaker/bundles"
target-dir="/etc/httpd/logs"
options="rw,Z"/>

</storage>
<primitive class="ocf" id="httpd" provider="heartbeat" type="apache"/>

</bundle>

2 Docker is a trademark of Docker, Inc. No endorsement by or association with Docker, Inc. is implied.

2.9. Collective Resources 95

https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://www.docker.com/
https://podman.io/


Pacemaker Explained, Release 3.0.0

Bundle Prerequisites

Before configuring a bundle in Pacemaker, the user must install the appropriate container launch technology
(Docker or podman), and supply a fully configured container image, on every node allowed to run the bundle.

Pacemaker will create an implicit resource of type ocf:heartbeat:docker or ocf:heartbeat:podman to
manage a bundle’s container. The user must ensure that the appropriate resource agent is installed on every
node allowed to run the bundle.

Bundle Properties

Table 24: XML Attributes of a bundle Element
Field Description
id

A unique name for the bundle (required)
description

Arbitrary text for user’s use (ignored by Pacemaker)

A bundle must contain exactly one docker or podman element.

Bundle Container Properties

Table 25: XML attributes of a docker or podman Element
Attribute Default Description
image Container image tag (required)
replicas Value of promoted-max if that is

positive, else 1
A positive integer specifying the number of
container instances to launch

replicas-per-host 1 A positive integer specifying the number of
container instances allowed to run on a single
node

promoted-max 0 A non-negative integer that, if positive, in-
dicates that the containerized service should
be treated as a promotable service, with this
many replicas allowed to run the service in
the promoted role

network If specified, this will be passed to the docker
run or podman run command as the network
setting for the container.

run-command /usr/sbin/pacemaker-remoted
if bundle contains a primitive,
otherwise none

This command will be run inside the con-
tainer when launching it (“PID 1”). If the
bundle contains a primitive, this command
must start pacemaker-remoted (but could,
for example, be a script that does other stuff,
too).

options Extra command-line options to pass to the
docker run or podman run command

Note: Considerations when using cluster configurations or container images from Pacemaker 1.1:

• If the container image has a pre-2.0.0 version of Pacemaker, set run-command to /usr/sbin/

96 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

pacemaker_remoted (note the underbar instead of dash).

• masters is accepted as an alias for promoted-max, but is deprecated since 2.0.0, and support for it will
be removed in a future version.

Bundle Network Properties

A bundle may optionally contain one <network> element.

Table 26: XML attributes of a network Element
Attribute Default Description
add-host TRUE

If TRUE, and ip-range-start is used, Pacemaker will automat-
ically ensure that /etc/hosts inside the containers has entries
for each replica name and its assigned IP.

ip-range-start
If specified, Pacemaker will create an implicit
ocf:heartbeat:IPaddr2 resource for each container instance,
starting with this IP address, using up to replicas sequential
addresses. These addresses can be used from the host’s network
to reach the service inside the container, though it is not visible
within the container itself. Only IPv4 addresses are currently
supported.

host-netmask 32
If ip-range-start is specified, the IP addresses are created with
this CIDR netmask (as a number of bits).

host-interface
If ip-range-start is specified, the IP addresses are created on
this host interface (by default, it will be determined from the IP
address).

control-port 3121
If the bundle contains a primitive, the cluster will use this inte-
ger TCP port for communication with Pacemaker Remote inside
the container. Changing this is useful when the container is un-
able to listen on the default port, for example, when the container
uses the host’s network rather than ip-range-start (in which
case replicas-per-host must be 1), or when the bundle may
run on a Pacemaker Remote node that is already listening on the
default port. Any PCMK_remote_port environment variable set
on the host or in the container is ignored for bundle connections.

Note: Replicas are named by the bundle id plus a dash and an integer counter starting with zero. For
example, if a bundle named httpd-bundle has replicas=2, its containers will be named httpd-bundle-0
and httpd-bundle-1.

Additionally, a network element may optionally contain one or more port-mapping elements.

2.9. Collective Resources 97



Pacemaker Explained, Release 3.0.0

Table 27: Attributes of a port-mapping Element
Attribute Default Description
id

A unique name for the port mapping (required)
port

If this is specified, connections to this TCP port number on
the host network (on the container’s assigned IP address, if
ip-range-start is specified) will be forwarded to the container
network. Exactly one of port or range must be specified in a
port-mapping.

internal-port value of
port If port and this are specified, connections to port on the host’s

network will be forwarded to this port on the container network.
range

If this is specified, connections to these TCP port numbers (ex-
pressed as first_port-last_port) on the host network (on the con-
tainer’s assigned IP address, if ip-range-start is specified) will
be forwarded to the same ports in the container network. Exactly
one of port or range must be specified in a port-mapping.

Note: If the bundle contains a primitive, Pacemaker will automatically map the control-port, so it is
not necessary to specify that port in a port-mapping.

Bundle Storage Properties

A bundle may optionally contain one storage element. A storage element has no properties of its own,
but may contain one or more storage-mapping elements.

Table 28: Attributes of a storage-mapping Element
Attribute Default Description
id

A unique name for the storage mapping (required)
source-dir

The absolute path on the host’s filesystem that will be
mapped into the container. Exactly one of source-dir and
source-dir-root must be specified in a storage-mapping.

source-dir-root
The start of a path on the host’s filesystem that will be mapped
into the container, using a different subdirectory on the host
for each container instance. The subdirectory will be named
the same as the replica name. Exactly one of source-dir and
source-dir-root must be specified in a storage-mapping.

target-dir
The path name within the container where the host storage will
be mapped (required)

options
A comma-separated list of file system mount options to use when
mapping the storage

Note: Pacemaker does not define the behavior if the source directory does not already exist on the
host. However, it is expected that the container technology and/or its resource agent will create the source

98 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

directory in that case.

Note: If the bundle contains a primitive, Pacemaker will automatically map the equivalent of
source-dir=/etc/pacemaker/authkey target-dir=/etc/pacemaker/authkey and source-dir-root=/
var/log/pacemaker/bundles target-dir=/var/log into the container, so it is not necessary to specify
those paths in a storage-mapping.

Important: The PCMK_authkey_location environment variable must not be set to anything other than
the default of /etc/pacemaker/authkey on any node in the cluster.

Important: If SELinux is used in enforcing mode on the host, you must ensure the container is allowed to
use any storage you mount into it. For Docker and podman bundles, adding “Z” to the mount options will
create a container-specific label for the mount that allows the container access.

Bundle Primitive

A bundle may optionally contain one primitive resource. The primitive may have operations, instance
attributes, and meta-attributes defined, as usual.

If a bundle contains a primitive resource, the container image must include the Pacemaker Remote daemon,
and at least one of ip-range-start or control-port must be configured in the bundle. Pacemaker will
create an implicit ocf:pacemaker:remote resource for the connection, launch Pacemaker Remote within
the container, and monitor and manage the primitive resource via Pacemaker Remote.

If the bundle has more than one container instance (replica), the primitive resource will function as an
implicit clone – a promotable clone if the bundle has promoted-max greater than zero.

Note: If you want to pass environment variables to a bundle’s Pacemaker Remote connection or primitive,
you have two options:

• Environment variables whose value is the same regardless of the underlying host may be set using the
container element’s options attribute.

• If you want variables to have host-specific values, you can use the storage-mapping element to map a
file on the host as /etc/pacemaker/pcmk-init.env in the container (since 2.0.3). Pacemaker Remote
will parse this file as a shell-like format, with variables set as NAME=VALUE, ignoring blank lines
and comments starting with “#”.

Important: When a bundle has a primitive, Pacemaker on all cluster nodes must be able to contact
Pacemaker Remote inside the bundle’s containers.

• The containers must have an accessible network (for example, network should not be set to “none”
with a primitive).

• The default, using a distinct network space inside the container, works in combination with
ip-range-start. Any firewall must allow access from all cluster nodes to the control-port on
the container IPs.

2.9. Collective Resources 99



Pacemaker Explained, Release 3.0.0

• If the container shares the host’s network space (for example, by setting network to “host”), a unique
control-port should be specified for each bundle. Any firewall must allow access from all cluster
nodes to the control-port on all cluster and remote node IPs.

Bundle Node Attributes

If the bundle has a primitive, the primitive’s resource agent may want to set node attributes such as
promotion scores. However, with containers, it is not apparent which node should get the attribute.

If the container uses shared storage that is the same no matter which node the container is hosted on, then
it is appropriate to use the promotion score on the bundle node itself.

On the other hand, if the container uses storage exported from the underlying host, then it may be more
appropriate to use the promotion score on the underlying host.

Since this depends on the particular situation, the container-attribute-target resource meta-attribute
allows the user to specify which approach to use. If it is set to host, then user-defined node attributes will
be checked on the underlying host. If it is anything else, the local node (in this case the bundle node) is
used as usual.

This only applies to user-defined attributes; the cluster will always check the local node for cluster-defined
attributes such as #uname.

If container-attribute-target is host, the cluster will pass additional environment vari-
ables to the primitive’s resource agent that allow it to set node attributes appropri-
ately: CRM_meta_container_attribute_target (identical to the meta-attribute value) and
CRM_meta_physical_host (the name of the underlying host).

Note: When called by a resource agent, the attrd_updater and crm_attribute commands will automat-
ically check those environment variables and set attributes appropriately.

Bundle Meta-Attributes

Any meta-attribute set on a bundle will be inherited by the bundle’s primitive and any resources implicitly
created by Pacemaker for the bundle.

This includes options such as priority, target-role, and is-managed. See Resource Options for more
information.

Bundles support clone meta-attributes including notify, ordered, and interleave.

Limitations of Bundles

Restarting pacemaker while a bundle is unmanaged or the cluster is in maintenance mode may cause the
bundle to fail.

Bundles may not be explicitly cloned or included in groups. This includes the bundle’s primitive and any
resources implicitly created by Pacemaker for the bundle. (If replicas is greater than 1, the bundle will
behave like a clone implicitly.)

Bundles do not have instance attributes, utilization attributes, or operations, though a bundle’s primitive
may have them.

100 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

A bundle with a primitive can run on a Pacemaker Remote node only if the bundle uses a distinct
control-port.

2.10 Utilization and Placement Strategy

Pacemaker decides where a resource should run by assigning a score to every node, considering factors such
as the resource’s constraints and stickiness, then assigning the resource to the node with the highest score.

If more than one node has the highest score, Pacemaker by default chooses the one with the least number
of assigned resources, or if that is also the same, the one listed first in the CIB. This results in simple load
balancing.

Sometimes, simple load balancing is insufficient. Different resources can use significantly different amounts of
a node’s memory, CPU, and other capacities. Some combinations of resources may strain a node’s capacity,
causing them to fail or have degraded performance. Or, an administrator may prefer to concentrate resources
rather than balance them, to minimize energy consumption by spare nodes.

Pacemaker offers flexibility by allowing you to configure utilization attributes specifying capacities that each
node provides and each resource requires, as well as a placement strategy.

2.10.1 Utilization attributes

You can define any number of utilization attributes to represent capacities of interest (CPU, memory, I/O
bandwidth, etc.). Their values must be integers.

The nature and units of the capacities are irrelevant to Pacemaker. It just makes sure that each node has
sufficient capacity to run the resources assigned to it.

Specifying CPU and RAM capacities of two nodes

<node id="node1" type="normal" uname="node1">
<utilization id="node1-utilization">
<nvpair id="node1-utilization-cpu" name="cpu" value="2"/>
<nvpair id="node1-utilization-memory" name="memory" value="2048"/>

</utilization>
</node>
<node id="node2" type="normal" uname="node2">

<utilization id="node2-utilization">
<nvpair id="node2-utilization-cpu" name="cpu" value="4"/>
<nvpair id="node2-utilization-memory" name="memory" value="4096"/>

</utilization>
</node>

Specifying CPU and RAM consumed by several resources

2.10. Utilization and Placement Strategy 101



Pacemaker Explained, Release 3.0.0

<primitive id="rsc-small" class="ocf" provider="pacemaker" type="Dummy">
<utilization id="rsc-small-utilization">
<nvpair id="rsc-small-utilization-cpu" name="cpu" value="1"/>
<nvpair id="rsc-small-utilization-memory" name="memory" value="1024"/>

</utilization>
</primitive>
<primitive id="rsc-medium" class="ocf" provider="pacemaker" type="Dummy">

<utilization id="rsc-medium-utilization">
<nvpair id="rsc-medium-utilization-cpu" name="cpu" value="2"/>
<nvpair id="rsc-medium-utilization-memory" name="memory" value="2048"/>

</utilization>
</primitive>
<primitive id="rsc-large" class="ocf" provider="pacemaker" type="Dummy">

<utilization id="rsc-large-utilization">
<nvpair id="rsc-large-utilization-cpu" name="cpu" value="3"/>
<nvpair id="rsc-large-utilization-memory" name="memory" value="3072"/>

</utilization>
</primitive>

Utilization attributes for a node may be permanent or (since 2.1.6) transient. Permanent attributes persist
after Pacemaker is restarted, while transient attributes do not.

Transient utilization attribute for node cluster-1

<transient_attributes id="cluster-1">
<utilization id="status-cluster-1">
<nvpair id="status-cluster-1-cpu" name="cpu" value="1"/>

</utilization>
</transient_attributes>

Utilization attributes may be configured only on primitive resources. Pacemaker will consider a collective
resource’s utilization based on the primitives it contains.

Note: Utilization is supported for bundles (since 2.1.3), but only for bundles with an inner primitive.

2.10.2 Placement Strategy

The placement-strategy cluster option determines how utilization attributes are used. Its allowed values
are:

• default: The cluster ignores utilization values, and places resources according to (from highest to
lowest precedence) assignment scores, the number of resources already assigned to each node, and the
order nodes are listed in the CIB.

• utilization: The cluster uses the same method as the default strategy to assign a resource to a node,
but only nodes with sufficient free capacity to meet the resource’s requirements are eligible.

• balanced: Only nodes with sufficient free capacity are eligible to run a resource, and the cluster
load-balances based on the sum of resource utilization values rather than the number of resources.

• minimal: Only nodes with sufficient free capacity are eligible to run a resource, and the cluster con-
centrates resources on as few nodes as possible.

102 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

To look at it another way, when deciding where to run a resource, the cluster starts by considering all nodes,
then applies these criteria one by one until a single node remains:

• If placement-strategy is utilization, balanced, or minimal, consider only nodes that have suffi-
cient spare capacities to meet the resource’s requirements.

• Consider only nodes with the highest score for the resource. Scores take into account factors such as
the node’s health; the resource’s stickiness, failure count on the node, and migration threshold; and
constraints.

• If placement-strategy is balanced, consider only nodes with the most free capacity.

• If placement-strategy is default, utilization, or balanced, consider only nodes with the least
number of assigned resources.

• If more than one node is eligible after considering all other criteria, choose the one listed first in the
CIB.

2.10.3 How Multiple Capacities Combine

If only one type of utilization attribute has been defined, free capacity is a simple numeric comparison.

If multiple utilization attributes have been defined, then the node that has the highest value in the most
attribute types has the most free capacity.

For example:

• If nodeA has more free cpus, and nodeB has more free memory, then their free capacities are equal.

• If nodeA has more free cpus, while nodeB has more free memory and storage, then nodeB has more
free capacity.

2.10.4 Order of Resource Assignment

When assigning resources to nodes, the cluster chooses the next one to assign by considering the following
criteria one by one until a single resource is selected:

• Assign the resource with the highest priority.

• If any resources are already active, assign the one with the highest score on its current node. This
avoids unnecessary resource shuffling.

• Assign the resource with the highest score on its preferred node.

• If more than one resource remains after considering all other criteria, assign the one of them that is
listed first in the CIB.

Note: For bundles, only the priority set for the bundle itself matters. If the bundle contains a primitive,
the primitive’s priority is ignored.

2.10.5 Limitations

The type of problem Pacemaker is dealing with here is known as the knapsack problem and falls into the
NP-complete category of computer science problems – a fancy way of saying “it takes a really long time to
solve”.

2.10. Utilization and Placement Strategy 103

https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/NP-completeness


Pacemaker Explained, Release 3.0.0

In a high-availability cluster, it is unacceptable to spend minutes, let alone hours or days, finding an optimal
solution while services are down.

Instead of trying to solve the problem completely, Pacemaker uses a “best effort” algorithm. This arrives at
a quick solution, but at the cost of possibly leaving some resources stopped unnecessarily.

Using the example configuration at the start of this chapter, and the balanced placement strategy:

• rsc-small would be assigned to node1

• rsc-medium would be assigned to node2

• rsc-large would remain inactive

That is not ideal. There are various approaches to dealing with the limitations of Pacemaker’s placement
strategy:

• Ensure you have sufficient physical capacity.

It might sound obvious, but if the physical capacity of your nodes is maxed out even under
normal conditions, failover isn’t going to go well. Even without the utilization feature, you’ll
start hitting timeouts and getting secondary failures.

• Build some buffer into the capacities advertised by the nodes.

Advertise slightly more resources than we physically have, on the (usually valid) assumption
that resources will not always use 100% of their configured utilization. This practice is
sometimes called overcommitting.

• Specify resource priorities.

If the cluster is going to sacrifice services, it should be the ones you care about the least.

2.11 Rules

Rules make a configuration more dynamic, allowing values to depend on conditions such as time of day or
the value of a node attribute. For example, rules can:

• Set a higher value for resource-stickiness during working hours to minimize downtime, and a lower
value on weekends to allow resources to move to their most preferred locations when people aren’t
around

• Automatically place the cluster into maintenance mode during a scheduled maintenance window

• Restrict a particular department’s resources to run on certain nodes, as determined by custom resource
meta-attributes and node attributes

2.11.1 Rule Options

Each context that supports rules may contain a single rule element.

Table 29: Attributes of a rule Element
Name Type Default Description
id id A unique name for this element (required)

Continued on next page

104 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 29 – continued from previous page
Name Type Default Description
boolean-op enumeration and How to combine conditions if this rule contains

more than one. Allowed values:
• and: the rule is satisfied only if all con-

ditions are satisfied
• or: the rule is satisfied if any condition

is satisfied

2.11.2 Rule Conditions and Contexts

A rule element must contain one or more conditions. A condition is any of the following, which will be
described in more detail later:

• a date/time expression

• a node attribute expression

• a resource type expression

• an operation type expression

• another rule (allowing for complex combinations of conditions)

Each type of condition is allowed only in certain contexts. Although any given context may contain only
one rule element, that element may contain any number of conditions, including other rule elements.

Rules may be used in the following contexts, which also will be described in more detail later:

• a location constraint

• a cluster_property_set element (within the crm_config element)

• an instance_attributes element (within an alert, bundle, clone, group, node, op, primitive,
recipient, or template element)

• a meta_attributes element (within an alert, bundle, clone, group, op, op_defaults, primitive,
recipient, rsc_defaults, or template element)

• a utilization element (within a node, primitive, or template element)

2.11.3 Date/Time Expressions

The date_expression element configures a rule condition based on the current date and time. It is allowed
in rules in any context.

It may contain a date_spec or duration element depending on the operation as described below.

Table 30: Attributes of a date_expression Element
Name Type Default Description
id id A unique name for this element (required)
start ISO 8601 The beginning of the desired time range. Meaningful with

an operation of in_range or gt.
end ISO 8601 The end of the desired time range. Meaningful with an

operation of in_range or lt.
Continued on next page

2.11. Rules 105



Pacemaker Explained, Release 3.0.0

Table 30 – continued from previous page
Name Type Default Description
operation enumeration in_range Specifies how to compare the current date/time against a

desired time range. Allowed values:
• gt: The expression is satisfied if the current

date/time is after start (which is required)
• lt: The expression is satisfied if the current

date/time is before end (which is required)
• in_range: The expression is satisfied if the current

date/time is greater than or equal to start (if speci-
fied) and less than or equal to either end (if specified)
or start plus the value of the duration element (if
one is contained in the date_expression). At least
one of start or end must be specified. If both end
and duration are specified, duration is ignored.

• date_spec: The expression is satisfied if the current
date/time matches the specification given in the con-
tained date_spec element (which is required)

Date Specifications

A date_spec element is used within a date_expression to specify a combination of dates and times that
satisfy the expression.

Table 31: Attributes of a date_spec Element
Name Type Default Description
id id A unique name for this element (required)
seconds range If this is set, the expression is satisfied only if the current

time’s second is within this range. Allowed integers: 0 to
59.

minutes range If this is set, the expression is satisfied only if the current
time’s minute is within this range. Allowed integers: 0 to
59.

hours range If this is set, the expression is satisfied only if the current
time’s hour is within this range. Allowed integers: 0 to 23
where 0 is midnight and 23 is 11 p.m.

monthdays range If this is set, the expression is satisfied only if the current
date’s day of the month is in this range. Allowed integers:
1 to 31.

weekdays range If this is set, the expression is satisfied only if the current
date’s ordinal day of the week is in this range. Allowed
integers: 1-7 (where 1 is Monday and 7 is Sunday).

yeardays range If this is set, the expression is satisfied only if the current
date’s ordinal day of the year is in this range. Allowed
integers: 1-366.

months range If this is set, the expression is satisfied only if the current
date’s month is in this range. Allowed integers: 1-12 where
1 is January and 12 is December.

Continued on next page

106 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 31 – continued from previous page
Name Type Default Description
weeks range If this is set, the expression is satisfied only if the current

date’s ordinal week of the year is in this range. Allowed
integers: 1-53.

years range If this is set, the expression is satisfied only if the current
date’s year according to the Gregorian calendar is in this
range.

weekyears range If this is set, the expression is satisfied only if the current
date’s year in which the week started (according to the ISO
8601 standard) is in this range.

moon range If this is set, the expression is satisfied only if the current
date’s phase of the moon is in this range. Allowed values
are 0 to 7 where 0 is the new moon and 4 is the full moon.
(deprecated since 2.1.6)

Note: Pacemaker can calculate when evaluation of a date_expression with an operation of gt, lt, or
in_range will next change, and schedule a cluster re-check for that time. However, it does not do this for
date_spec. Instead, it evaluates the date_spec whenever a cluster re-check naturally happens via a cluster
event or the cluster-recheck-interval cluster option.

For example, if you have a date_spec enabling a resource from 9 a.m. to 5 p.m., and
cluster-recheck-interval has been set to 5 minutes, then sometime between 9 a.m. and 9:05 a.m.
the cluster would notice that it needs to start the resource, and sometime between 5 p.m. and 5:05 p.m.
it would realize that it needs to stop the resource. The timing of the actual start and stop actions will
further depend on factors such as any other actions the cluster may need to perform first, and the load of
the machine.

Durations

A duration element is used within a date_expression to calculate an ending value for in_range operations
when end is not supplied.

Table 32: Attributes of a duration Element
Name Type Default Description
id id A unique name for this element (required)
seconds integer 0 Number of seconds to add to the total duration
minutes integer 0 Number of minutes to add to the total duration
hours integer 0 Number of hours to add to the total duration
days integer 0 Number of days to add to the total duration
weeks integer 0 Number of weeks to add to the total duration
months integer 0 Number of months to add to the total duration
years integer 0 Number of years to add to the total duration

Example Date/Time Expressions

2.11. Rules 107



Pacemaker Explained, Release 3.0.0

Satisfied if the current year is 2005

<rule id="rule1" score="INFINITY">
<date_expression id="date_expr1" start="2005-001" operation="in_range">
<duration id="duration1" years="1"/>
</date_expression>

</rule>

or equivalently:
<rule id="rule2" score="INFINITY">

<date_expression id="date_expr2" operation="date_spec">
<date_spec id="date_spec2" years="2005"/>
</date_expression>

</rule>

9 a.m. to 5 p.m. Monday through Friday

<rule id="rule3" score="INFINITY">
<date_expression id="date_expr3" operation="date_spec">
<date_spec id="date_spec3" hours="9-16" weekdays="1-5"/>
</date_expression>

</rule>

Note that the 16 matches all the way through 16:59:59, because the numeric value of the hour still
matches.

9 a.m. to 6 p.m. Monday through Friday, or anytime Saturday

<rule id="rule4" score="INFINITY" boolean-op="or">
<date_expression id="date_expr4-1" operation="date_spec">
<date_spec id="date_spec4-1" hours="9-16" weekdays="1-5"/>
</date_expression>
<date_expression id="date_expr4-2" operation="date_spec">
<date_spec id="date_spec4-2" weekdays="6"/>
</date_expression>

</rule>

9 a.m. to 5 p.m. or 9 p.m. to 12 a.m. Monday through Friday

<rule id="rule5" score="INFINITY" boolean-op="and">
<rule id="rule5-nested1" score="INFINITY" boolean-op="or">
<date_expression id="date_expr5-1" operation="date_spec">
<date_spec id="date_spec5-1" hours="9-16"/>

</date_expression>
<date_expression id="date_expr5-2" operation="date_spec">
<date_spec id="date_spec5-2" hours="21-23"/>

</date_expression>
</rule>
<date_expression id="date_expr5-3" operation="date_spec">
<date_spec id="date_spec5-3" weekdays="1-5"/>
</date_expression>

</rule>

108 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Mondays in March 2005

<rule id="rule6" score="INFINITY" boolean-op="and">
<date_expression id="date_expr6-1" operation="date_spec">
<date_spec id="date_spec6" weekdays="1"/>
</date_expression>
<date_expression id="date_expr6-2" operation="in_range"

start="2005-03-01" end="2005-04-01"/>
</date_expression>

</rule>

Note: Because no time is specified with the above dates, 00:00:00 is implied. This means that the
range includes all of 2005-03-01 but only the first second of 2005-04-01. You may wish to write end as
"2005-03-31T23:59:59" to avoid confusion.

2.11.4 Node Attribute Expressions

The expression element configures a rule condition based on the value of a node attribute. It is allowed
in rules in location constraints and in instance_attributes elements within bundle, clone, group, op,
primitive, and template elements.

Table 33: Attributes of an expression Element
Name Type Default Description
id id A unique name for this element (required)

at-
tribute

text Name of the node attribute to test (required)

Continued on next page

2.11. Rules 109



Pacemaker Explained, Release 3.0.0

Table 33 – continued from previous page
Name Type Default Description
opera-

tion
enumeration The comparison to perform (required). Allowed

values:
• defined: The expression is satisfied if the

node has the named attribute
• not_defined: The expression is satisfied if

the node does not have the named attribute
• lt: The expression is satisfied if the node

attribute value is less than the reference value
• gt: The expression is satisfied if the node

attribute value is greater than the reference
value

• lte: The expression is satisfied if the node
attribute value is less than or equal to the
reference value

• gte: The expression is satisfied if the node
attribute value is greater than or equal to the
reference value

• eq: The expression is satisfied if the node
attribute value is equal to the reference value

• ne: The expression is satisfied if the node
attribute value is not equal to the reference
value

type enumerationThe default type for lt, gt,
lte, and gte operations is
number if either value con-
tains a decimal point char-
acter, or integer otherwise.
The default type for all other
operations is string. If a
numeric parse fails for either
value, then the values are
compared as type string.

How to interpret values. Allowed values are string,
integer (since 2.0.5), number, and version.
integer truncates floating-point values if neces-
sary before performing a 64-bit integer comparison.
number performs a double-precision floating-point
comparison (32-bit integer before 2.0.5).

value text Reference value to compare node attribute against
(used only with, and required for, operations other
than defined and not_defined)

value-
source

enumerationliteral How the reference value is obtained. Allowed val-
ues:

• literal: value contains the literal reference
value to compare

• param: value contains the name of a resource
parameter to compare (valid only in the con-
text of a location constraint)

• meta: value is the name of a resource meta-
attribute to compare (valid only in the con-
text of a location constraint)

In addition to custom node attributes defined by the administrator, the cluster defines special, built-in node
attributes for each node that can also be used in rule expressions.

110 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 34: Built-in Node Attributes
Name Description
#uname Node name
#id Node ID
#kind Node type (cluster for cluster nodes, remote for Pacemaker Remote nodes created

with the ocf:pacemaker:remote resource, and container for Pacemaker Remote
guest nodes and bundle nodes)

#is_dc true if this node is the cluster’s Designated Controller (DC), false otherwise
#cluster-name The value of the cluster-name cluster property, if set
#site-name The value of the site-name node attribute, if set, otherwise identical to

#cluster-name

2.11.5 Resource Type Expressions

The rsc_expression element (since 2.0.5) configures a rule condition based on the agent used for a resource.
It is allowed in rules in a meta_attributes element within a rsc_defaults or op_defaults element.

Table 35: Attributes of a rsc_expression Element
Name Type Default Description
id id A unique name for this element (required)
class text If this is set, the expression is satisfied only if the resource’s

agent standard matches this value
provider text If this is set, the expression is satisfied only if the resource’s

agent provider matches this value
type text If this is set, the expression is satisfied only if the resource’s

agent type matches this value

Example Resource Type Expressions

Satisfied for ocf:heartbeat:IPaddr2 resources

<rule id="rule1" score="INFINITY">
<rsc_expression id="rule_expr1" class="ocf" provider="heartbeat" type="IPaddr2"/>

</rule>

Satisfied for stonith:fence_xvm resources

<rule id="rule2" score="INFINITY">
<rsc_expression id="rule_expr2" class="stonith" type="fence_xvm"/>

</rule>

2.11.6 Operation Type Expressions

The op_expression element (since 2.0.5) configures a rule condition based on a resource operation name
and interval. It is allowed in rules in a meta_attributes element within an op_defaults element.

2.11. Rules 111



Pacemaker Explained, Release 3.0.0

Table 36: Attributes of an op_expression Element
Name Type Default Description
id id A unique name for this element (required)
name text The expression is satisfied only if the operation’s name

matches this value (required)
interval duration If this is set, the expression is satisfied only if the opera-

tion’s interval matches this value

Example Operation Type Expressions

Expression is satisfied for all monitor actions

<rule id="rule1" score="INFINITY">
<op_expression id="rule_expr1" name="monitor"/>

</rule>

Expression is satisfied for all monitor actions with a 10-second interval

<rule id="rule2" score="INFINITY">
<op_expression id="rule_expr2" name="monitor" interval="10s"/>

</rule>

2.11.7 Using Rules to Determine Resource Location

If a location constraint contains a rule, the cluster will apply the constraint to all nodes where the rule is
satisfied. This acts as if identical location constraints without rules were defined for each of the nodes.

In the context of a location constraint, rule elements may take additional attributes. These have an effect
only when set for the constraint’s top-level rule; they are ignored if set on a subrule.

Table 37: Extra Attributes of a rule Element in a Location
Constraint

Name Type Default Description
role enumeration Started If this is set in the constraint’s top-level rule, the

constraint acts as if role were set to this in the
rsc_location element.

score score If this is set in the constraint’s top-level rule, the
constraint acts as if score were set to this in the
rsc_location element. Only one of score and
score-attribute may be set.

score-attribute text If this is set in the constraint’s top-level rule, the
constraint acts as if score were set to the value of
this node attribute on each node where the rule is
satisfied. Only one of score and score-attribute
may be set.

Consider the following simple location constraint:

112 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Prevent resource webserver from running on node node3

<rsc_location id="ban-apache-on-node3" rsc="webserver"
score="-INFINITY" node="node3"/>

The same constraint can be written more verbosely using a rule:

Prevent resource webserver from running on node node3 using a rule

<rsc_location id="ban-apache-on-node3" rsc="webserver">
<rule id="ban-apache-rule" score="-INFINITY">
<expression id="ban-apache-expr" attribute="#uname"

operation="eq" value="node3"/>
</rule>

</rsc_location>

The advantage of using the expanded form is that one could add more expressions (for example, limiting the
constraint to certain days of the week).

Location Rules Based on Other Node Properties

The expanded form allows us to match node attributes other than its name. As an example, consider this
configuration of custom node attributes specifying each node’s CPU capacity:

Sample node section with node attributes

<nodes>
<node id="uuid1" uname="c001n01" type="normal">

<instance_attributes id="uuid1-custom_attrs">
<nvpair id="uuid1-cpu_mips" name="cpu_mips" value="1234"/>

</instance_attributes>
</node>
<node id="uuid2" uname="c001n02" type="normal">

<instance_attributes id="uuid2-custom_attrs">
<nvpair id="uuid2-cpu_mips" name="cpu_mips" value="5678"/>

</instance_attributes>
</node>

</nodes>

We can use a rule to prevent a resource from running on underpowered machines:

Rule using a node attribute (to be used inside a location constraint)

<rule id="need-more-power-rule" score="-INFINITY">
<expression id="need-more-power-expr" attribute="cpu_mips"

operation="lt" value="3000"/>
</rule>

2.11. Rules 113



Pacemaker Explained, Release 3.0.0

Using score-attribute Instead of score

When using score-attribute instead of score, each node matched by the rule has its score adjusted
according to its value for the named node attribute.

In the previous example, if the location constraint rule used score-attribute="cpu_mips" instead of
score="-INFINITY", node c001n01 would have its preference to run the resource increased by 1234 whereas
node c001n02 would have its preference increased by 5678.

Specifying location scores using pattern submatches

Location constraints may use rsc-pattern to apply the constraint to all resources whose IDs match the given
pattern. The pattern may contain up to 9 submatches in parentheses, whose values may be used as %1
through %9 in a rule element’s score-attribute or an expression element’s attribute.

For example, the following configuration excerpt gives the resources server-httpd and ip-httpd a preference
of 100 on node1 and 50 on node2, and ip-gateway a preference of -100 on node1 and 200 on node2.

Location constraint using submatches

<nodes>
<node id="1" uname="node1">

<instance_attributes id="node1-attrs">
<nvpair id="node1-prefer-httpd" name="prefer-httpd" value="100"/>
<nvpair id="node1-prefer-gateway" name="prefer-gateway" value="-100"/>

</instance_attributes>
</node>
<node id="2" uname="node2">

<instance_attributes id="node2-attrs">
<nvpair id="node2-prefer-httpd" name="prefer-httpd" value="50"/>
<nvpair id="node2-prefer-gateway" name="prefer-gateway" value="200"/>

</instance_attributes>
</node>

</nodes>
<resources>

<primitive id="server-httpd" class="ocf" provider="heartbeat" type="apache"/>
<primitive id="ip-httpd" class="ocf" provider="heartbeat" type="IPaddr2"/>
<primitive id="ip-gateway" class="ocf" provider="heartbeat" type="IPaddr2"/>

</resources>
<constraints>

<!-- The following constraint says that for any resource whose name
starts with "server-" or "ip-", that resource's preference for a
node is the value of the node attribute named "prefer-" followed
by the part of the resource name after "server-" or "ip-",
wherever such a node attribute is defined.

-->
<rsc_location id="location1" rsc-pattern="(server|ip)-(.*)">

<rule id="location1-rule1" score-attribute="prefer-%2">
<expression id="location1-rule1-expression1" attribute="prefer-%2" operation="defined"/>

</rule>
</rsc_location>

</constraints>

114 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

2.11.8 Using Rules to Define Options

Rules may be used to control a variety of options:

• Cluster options (as cluster_property_set elements)

• Node attributes (as instance_attributes or utilization elements inside a node element)

• Resource options (as utilization, meta_attributes, or instance_attributes elements inside a
resource definition element or op , rsc_defaults, op_defaults, or template element)

• Operation options (as meta_attributes elements inside an op or op_defaults element)

• Alert options (as instance_attributes or meta_attributes elements inside an alert or recipient
element)

Using Rules to Control Resource Options

Often some cluster nodes will be different from their peers. Sometimes, these differences (for example,
the location of a binary, or the names of network interfaces) require resources to be configured differently
depending on the machine they’re hosted on.

By defining multiple instance_attributes elements for the resource and adding a rule to each, we can
easily handle these special cases.

In the example below, mySpecialRsc will use eth1 and port 9999 when run on node1, eth2 and port 8888
on node2 and default to eth0 and port 9999 for all other nodes.

Defining different resource options based on the node name

<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
<instance_attributes id="special-node1" score="3">
<rule id="node1-special-case" score="INFINITY" >
<expression id="node1-special-case-expr" attribute="#uname"
operation="eq" value="node1"/>

</rule>
<nvpair id="node1-interface" name="interface" value="eth1"/>
</instance_attributes>
<instance_attributes id="special-node2" score="2" >
<rule id="node2-special-case" score="INFINITY">
<expression id="node2-special-case-expr" attribute="#uname"
operation="eq" value="node2"/>

</rule>
<nvpair id="node2-interface" name="interface" value="eth2"/>
<nvpair id="node2-port" name="port" value="8888"/>
</instance_attributes>
<instance_attributes id="defaults" score="1" >
<nvpair id="default-interface" name="interface" value="eth0"/>
<nvpair id="default-port" name="port" value="9999"/>
</instance_attributes>

</primitive>

Multiple instance_attributes elements are evaluated from highest score to lowest. If not supplied, the score
defaults to zero. Objects with equal scores are processed in their listed order. If an instance_attributes
object has no rule or a satisfied rule, then for any parameter the resource does not yet have a value for, the
resource will use the value defined by the instance_attributes.

For example, given the configuration above, if the resource is placed on node1:

2.11. Rules 115



Pacemaker Explained, Release 3.0.0

• special-node1 has the highest score (3) and so is evaluated first; its rule is satisfied, so interface is
set to eth1.

• special-node2 is evaluated next with score 2, but its rule is not satisfied, so it is ignored.

• defaults is evaluated last with score 1, and has no rule, so its values are examined; interface is
already defined, so the value here is not used, but port is not yet defined, so port is set to 9999.

Using Rules to Control Resource Defaults

Rules can be used for resource and operation defaults.

The following example illustrates how to set a different resource-stickiness value during and outside
work hours. This allows resources to automatically move back to their most preferred hosts, but at a time
that (in theory) does not interfere with business activities.

Change resource-stickiness during working hours

<rsc_defaults>
<meta_attributes id="core-hours" score="2">

<rule id="core-hour-rule" score="0">
<date_expression id="nine-to-five-Mon-to-Fri" operation="date_spec">
<date_spec id="nine-to-five-Mon-to-Fri-spec" hours="9-16" weekdays="1-5"/>

</date_expression>
</rule>
<nvpair id="core-stickiness" name="resource-stickiness" value="INFINITY"/>

</meta_attributes>
<meta_attributes id="after-hours" score="1" >

<nvpair id="after-stickiness" name="resource-stickiness" value="0"/>
</meta_attributes>

</rsc_defaults>

rsc_expression is valid within both rsc_defaults and op_defaults; op_expression is valid only within
op_defaults.

Default all IPaddr2 resources to stopped

<rsc_defaults>
<meta_attributes id="op-target-role">

<rule id="op-target-role-rule" score="INFINITY">
<rsc_expression id="op-target-role-expr" class="ocf" provider="heartbeat"
type="IPaddr2"/>

</rule>
<nvpair id="op-target-role-nvpair" name="target-role" value="Stopped"/>

</meta_attributes>
</rsc_defaults>

Default all monitor action timeouts to 7 seconds

116 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

<op_defaults>
<meta_attributes id="op-monitor-defaults">

<rule id="op-monitor-default-rule" score="INFINITY">
<op_expression id="op-monitor-default-expr" name="monitor"/>

</rule>
<nvpair id="op-monitor-timeout" name="timeout" value="7s"/>

</meta_attributes>
</op_defaults>

Default the timeout on all 10-second-interval monitor actions on IPaddr2 resources to 8
seconds

<op_defaults>
<meta_attributes id="op-monitor-and">

<rule id="op-monitor-and-rule" score="INFINITY">
<rsc_expression id="op-monitor-and-rsc-expr" class="ocf" provider="heartbeat"
type="IPaddr2"/>

<op_expression id="op-monitor-and-op-expr" name="monitor" interval="10s"/>
</rule>
<nvpair id="op-monitor-and-timeout" name="timeout" value="8s"/>

</meta_attributes>
</op_defaults>

Using Rules to Control Cluster Options

Controlling cluster options is achieved in much the same manner as specifying different resource options on
different nodes.

The following example illustrates how to set maintenance_mode during a scheduled maintenance window.
This will keep the cluster running but not monitor, start, or stop resources during this time.

Schedule a maintenance window for 9 to 11 p.m. CDT Sept. 20, 2019

<crm_config>
<cluster_property_set id="cib-bootstrap-options">

<nvpair id="bootstrap-stonith-enabled" name="stonith-enabled" value="1"/>
</cluster_property_set>
<cluster_property_set id="normal-set" score="10">
<nvpair id="normal-maintenance-mode" name="maintenance-mode" value="false"/>

</cluster_property_set>
<cluster_property_set id="maintenance-window-set" score="1000">
<nvpair id="maintenance-nvpair1" name="maintenance-mode" value="true"/>
<rule id="maintenance-rule1" score="INFINITY">
<date_expression id="maintenance-date1" operation="in_range"

start="2019-09-20 21:00:00 -05:00" end="2019-09-20 23:00:00 -05:00"/>
</rule>

</cluster_property_set>
</crm_config>

Important: The cluster_property_set with an id set to “cib-bootstrap-options” will always have the

2.11. Rules 117



Pacemaker Explained, Release 3.0.0

highest priority, regardless of any scores. Therefore, rules in another cluster_property_set can never take
effect for any properties listed in the bootstrap set.

2.12 Access Control Lists (ACLs)

By default, the root user or any user in the haclient group can modify Pacemaker’s CIB without restriction.
Pacemaker offers access control lists (ACLs) to provide more fine-grained authorization.

Important: Being able to modify the CIB’s resource section allows a user to run any executable file as
root, by configuring it as an LSB resource with a full path.

2.12.1 ACL Prerequisites

In order to use ACLs:

• The enable-acl cluster option must be set to true.

• Desired users must have user accounts in the haclient group on all cluster nodes in the cluster.

• If your CIB was created before Pacemaker 1.1.12, it might need to be updated to the current schema
(using cibadmin --upgrade or a higher-level tool equivalent) in order to use the syntax documented
here.

• Prior to the 2.1.0 release, the Pacemaker software had to have been built with ACL support. If you are
using an older release, your installation supports ACLs only if the output of the command pacemakerd
--features contains acls. In newer versions, ACLs are always enabled.

Important: enable-acl should be set either by the root user, or as part of a batch of CIB changes
including roles and users. Otherwise, the user setting it might lock themselves out from making any further
changes.

2.12.2 ACL Configuration

ACLs are specified within an acls element of the CIB. The acls element may contain any number of
acl_role, acl_target, and acl_group elements.

2.12.3 ACL Roles

An ACL role is a collection of permissions allowing or denying access to particular portions of the CIB. A
role is configured with an acl_role element in the CIB acls section.

Table 38: Properties of an acl_role element
Attribute Description
id

A unique name for the role (required)
description

Arbitrary text for user’s use (ignored by Pacemaker)

118 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

An acl_role element may contain any number of acl_permission elements.

Table 39: Properties of an acl_permission element
Attribute Description
id

A unique name for the permission (required)
description

Arbitrary text for user’s use (ignored by Pacemaker)
kind

The access being granted. Allowed values are read, write, and deny. A value
of write grants both read and write access.

object-type
The name of an XML element in the CIB to which the permission applies.
(Exactly one of object-type, xpath, and reference must be specified for a
permission.)

attribute
If specified, the permission applies only to object-type elements that have
this attribute set (to any value). If not specified, the permission applies to all
object-type elements. May only be used with object-type.

reference
The ID of an XML element in the CIB to which the permission applies. (Ex-
actly one of object-type, xpath, and reference must be specified for a per-
mission.)

xpath
An XPath specification selecting an XML element in the CIB to which the
permission applies. Attributes may be specified in the XPath to select partic-
ular elements, but the permissions apply to the entire element. (Exactly one
of object-type, xpath, and reference must be specified for a permission.)

Important:

• Permissions are applied to the selected XML element’s entire XML subtree (all elements enclosed
within it).

• Write permission grants the ability to create, modify, or remove the element and its subtree, and also
the ability to create any “scaffolding” elements (enclosing elements that do not have attributes other
than an ID).

• Permissions for more specific matches (more deeply nested elements) take precedence over more general
ones.

• If multiple permissions are configured for the same match (for example, in different roles applied to
the same user), any deny permission takes precedence, then write, then lastly read.

2.12.4 ACL Targets and Groups

ACL targets correspond to user accounts on the system.

2.12. Access Control Lists (ACLs) 119

https://www.w3.org/TR/xpath-10/


Pacemaker Explained, Release 3.0.0

Table 40: Properties of an acl_target element
Attribute Description
id

A unique identifier for the target (if name is not specified, this must be the
name of the user account) (required)

name
If specified, the user account name (this allows you to specify a user name that
is already used as the id for some other configuration element) (since 2.1.5)

ACL groups correspond to groups on the system. Any role configured for these groups apply to all users in
that group (since 2.1.5).

Table 41: Properties of an acl_group element
Attribute Description
id

A unique identifier for the group (if name is not specified, this must be the
group name) (required)

name
If specified, the group name (this allows you to specify a group name that is
already used as the id for some other configuration element)

Each acl_target and acl_group element may contain any number of role elements.

Note: If the system users and groups are defined by some network service (such as LDAP), the cluster
itself will be unaffected by outages in the service, but affected users and groups will not be able to make
changes to the CIB.

Table 42: Properties of a role element
Attribute Description
id

The id of an acl_role element that specifies permissions granted to the en-
closing target or group.

Important: The root and hacluster user accounts always have full access to the CIB, regardless of
ACLs. For all other user accounts, when enable-acl is true, permission to all parts of the CIB is denied by
default (permissions must be explicitly granted).

2.12.5 ACLs and Pacemaker Remote Nodes

ACLs apply differently on Pacemaker Remote nodes, which are assumed to be special-purpose hosts without
typical user accounts. Instead, CIB modifications coming from a Pacemaker Remote node use the node’s
name as the ACL user name, and pacemaker-remote as the role.

2.12.6 ACL Examples

120 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

<acls>

<acl_role id="read_all">
<acl_permission id="read_all-cib" kind="read" xpath="/cib" />

</acl_role>

<acl_role id="operator">

<acl_permission id="operator-maintenance-mode" kind="write"
xpath="//crm_config//nvpair[@name='maintenance-mode']" />

<acl_permission id="operator-maintenance-attr" kind="write"
xpath="//nvpair[@name='maintenance']" />

<acl_permission id="operator-target-role" kind="write"
xpath="//resources//meta_attributes/nvpair[@name='target-role']" />

<acl_permission id="operator-is-managed" kind="write"
xpath="//resources//nvpair[@name='is-managed']" />

<acl_permission id="operator-rsc_location" kind="write"
object-type="rsc_location" />

</acl_role>

<acl_role id="administrator">
<acl_permission id="administrator-cib" kind="write" xpath="/cib" />

</acl_role>

<acl_role id="minimal">

<acl_permission id="minimal-standby" kind="read"
description="allow reading standby node attribute (permanent or transient)"
xpath="//instance_attributes/nvpair[@name='standby']"/>

<acl_permission id="minimal-maintenance" kind="read"
description="allow reading maintenance node attribute (permanent or transient)"
xpath="//nvpair[@name='maintenance']"/>

<acl_permission id="minimal-target-role" kind="read"
description="allow reading resource target roles"
xpath="//resources//meta_attributes/nvpair[@name='target-role']"/>

<acl_permission id="minimal-is-managed" kind="read"
description="allow reading resource managed status"
xpath="//resources//meta_attributes/nvpair[@name='is-managed']"/>

<acl_permission id="minimal-deny-instance-attributes" kind="deny"
xpath="//instance_attributes"/>

<acl_permission id="minimal-deny-meta-attributes" kind="deny"
xpath="//meta_attributes"/>

<acl_permission id="minimal-deny-operations" kind="deny"
xpath="//operations"/>

<acl_permission id="minimal-deny-utilization" kind="deny"

(continues on next page)

2.12. Access Control Lists (ACLs) 121



Pacemaker Explained, Release 3.0.0

(continued from previous page)
xpath="//utilization"/>

<acl_permission id="minimal-nodes" kind="read"
description="allow reading node names/IDs (attributes are denied separately)"
xpath="/cib/configuration/nodes"/>

<acl_permission id="minimal-resources" kind="read"
description="allow reading resource names/agents (parameters are denied separately)"
xpath="/cib/configuration/resources"/>

<acl_permission id="minimal-deny-constraints" kind="deny"
xpath="/cib/configuration/constraints"/>

<acl_permission id="minimal-deny-topology" kind="deny"
xpath="/cib/configuration/fencing-topology"/>

<acl_permission id="minimal-deny-op_defaults" kind="deny"
xpath="/cib/configuration/op_defaults"/>

<acl_permission id="minimal-deny-rsc_defaults" kind="deny"
xpath="/cib/configuration/rsc_defaults"/>

<acl_permission id="minimal-deny-alerts" kind="deny"
xpath="/cib/configuration/alerts"/>

<acl_permission id="minimal-deny-acls" kind="deny"
xpath="/cib/configuration/acls"/>

<acl_permission id="minimal-cib" kind="read"
description="allow reading cib element and crm_config/status sections"
xpath="/cib"/>

</acl_role>

<acl_target id="alice">
<role id="minimal"/>

</acl_target>

<acl_target id="bob">
<role id="read_all"/>

</acl_target>

<acl_target id="carol">
<role id="read_all"/>
<role id="operator"/>

</acl_target>

<acl_target id="dave">
<role id="administrator"/>

</acl_target>

</acls>

In the above example, the user alice has the minimal permissions necessary to run basic Pacemaker CLI
tools, including using crm_mon to view the cluster status, without being able to modify anything. The user
bob can view the entire configuration and status of the cluster, but not make any changes. The user carol
can read everything, and change selected cluster properties as well as resource roles and location constraints.

122 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Finally, dave has full read and write access to the entire CIB.

Looking at the minimal role in more depth, it is designed to allow read access to the cib tag itself, while
denying access to particular portions of its subtree (which is the entire CIB).

This is because the DC node is indicated in the cib tag, so crm_mon will not be able to report the DC
otherwise. However, this does change the security model to allow by default, since any portions of the CIB
not explicitly denied will be readable. The cib read access could be removed and replaced with read access
to just the crm_config and status sections, for a safer approach at the cost of not seeing the DC in status
output.

For a simpler configuration, the minimal role allows read access to the entire crm_config section, which
contains cluster properties. It would be possible to allow read access to specific properties instead (such as
stonith-enabled, dc-uuid, have-quorum, and cluster-name) to restrict access further while still allowing
status output, but cluster properties are unlikely to be considered sensitive.

2.12.7 ACL Limitations

Actions performed via IPC rather than the CIB

ACLs apply only to the CIB.

That means ACLs apply to command-line tools that operate by reading or writing the CIB, such as
crm_attribute when managing permanent node attributes, crm_mon, and cibadmin.

However, command-line tools that communicate directly with Pacemaker daemons via IPC are not affected
by ACLs. For example, users in the haclient group may still do the following, regardless of ACLs:

• Query transient node attribute values using crm_attribute and attrd_updater.

• Query basic node information using crm_node.

• Erase resource operation history using crm_resource.

• Query fencing configuration information, and execute fencing against nodes, using stonith_admin.

ACLs and Pacemaker Remote

ACLs apply to commands run on Pacemaker Remote nodes using the Pacemaker Remote node’s name as
the ACL user name.

The idea is that Pacemaker Remote nodes (especially virtual machines and containers) are likely to be
purpose-built and have different user accounts from full cluster nodes.

2.13 Alerts

Alerts may be configured to take some external action when a cluster event occurs (node failure, resource
starting or stopping, etc.).

2.13.1 Alert Agents

As with resource agents, the cluster calls an external program (an alert agent) to handle alerts. The cluster
passes information about the event to the agent via environment variables. Agents can do anything desired
with this information (send an e-mail, log to a file, update a monitoring system, etc.).

2.13. Alerts 123



Pacemaker Explained, Release 3.0.0

Simple alert configuration

<configuration>
<alerts>

<alert id="my-alert" path="/path/to/my-script.sh" />
</alerts>

</configuration>

In the example above, the cluster will call my-script.sh for each event.

Multiple alert agents may be configured; the cluster will call all of them for each event.

Alert agents will be called only on cluster nodes. They will be called for events involving Pacemaker Remote
nodes, but they will never be called on those nodes.

For more information about sample alert agents provided by Pacemaker and about developing custom alert
agents, see the Pacemaker Administration document.

2.13.2 Alert Recipients

Usually, alerts are directed towards a recipient. Thus, each alert may be additionally configured with one or
more recipients. The cluster will call the agent separately for each recipient.

Alert configuration with recipient

<configuration>
<alerts>

<alert id="my-alert" path="/path/to/my-script.sh">
<recipient id="my-alert-recipient" value="some-address"/>

</alert>
</alerts>

</configuration>

In the above example, the cluster will call my-script.sh for each event, passing the recipient some-address
as an environment variable.

The recipient may be anything the alert agent can recognize – an IP address, an e-mail address, a file name,
whatever the particular agent supports.

2.13.3 Alert Meta-Attributes

As with resources, meta-attributes can be configured for alerts to change whether and how Pacemaker calls
them.

Table 43: Meta-Attributes of an Alert or Recipient
Meta-Attribute Default Description
description Arbitrary text for user’s use (ignored by Pacemaker)
enabled true If false for an alert, the alert will not be used. If true for

an alert and false for a particular recipient of that alert, that
recipient will not be used. (since 2.1.6)

Continued on next page

124 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 43 – continued from previous page
Meta-Attribute Default Description
timestamp-format %H:%M:%S.%06N Format the cluster will use when sending the event’s times-

tamp to the agent. This is a string as used with the date(1)
command.

timeout 30s If the alert agent does not complete within this amount of
time, it will be terminated.

Meta-attributes can be configured per alert and/or per recipient.

Alert configuration with meta-attributes

<configuration>
<alerts>

<alert id="my-alert" path="/path/to/my-script.sh">
<meta_attributes id="my-alert-attributes">

<nvpair id="my-alert-attributes-timeout" name="timeout"
value="15s"/>

</meta_attributes>
<recipient id="my-alert-recipient1" value="someuser@example.com">

<meta_attributes id="my-alert-recipient1-attributes">
<nvpair id="my-alert-recipient1-timestamp-format"

name="timestamp-format" value="%D %H:%M"/>
</meta_attributes>

</recipient>
<recipient id="my-alert-recipient2" value="otheruser@example.com">

<meta_attributes id="my-alert-recipient2-attributes">
<nvpair id="my-alert-recipient2-timestamp-format"

name="timestamp-format" value="%c"/>
</meta_attributes>

</recipient>
</alert>

</alerts>
</configuration>

In the above example, the my-script.sh will get called twice for each event, with each call using a 15-second
timeout. One call will be passed the recipient someuser@example.com and a timestamp in the format %D
%H:%M, while the other call will be passed the recipient otheruser@example.com and a timestamp in the
format %c.

2.13.4 Alert Instance Attributes

As with resource agents, agent-specific configuration values may be configured as instance attributes. These
will be passed to the agent as additional environment variables. The number, names and allowed values of
these instance attributes are completely up to the particular agent.

Alert configuration with instance attributes

2.13. Alerts 125



Pacemaker Explained, Release 3.0.0

<configuration>
<alerts>

<alert id="my-alert" path="/path/to/my-script.sh">
<meta_attributes id="my-alert-attributes">

<nvpair id="my-alert-attributes-timeout" name="timeout"
value="15s"/>

</meta_attributes>
<instance_attributes id="my-alert-options">

<nvpair id="my-alert-options-debug" name="debug"
value="false"/>

</instance_attributes>
<recipient id="my-alert-recipient1"

value="someuser@example.com"/>
</alert>

</alerts>
</configuration>

2.13.5 Alert Filters

By default, an alert agent will be called for node events, fencing events, and resource events. An agent may
choose to ignore certain types of events, but there is still the overhead of calling it for those events. To
eliminate that overhead, you may select which types of events the agent should receive.

Alert filters are configured within a select element inside an alert element.

Table 44: Possible alert filters
Name Events alerted
select_nodes A node joins or leaves the cluster (whether at the cluster layer for cluster nodes,

or via a remote connection for Pacemaker Remote nodes).
select_fencing Fencing or unfencing of a node completes (whether successfully or not).
select_resources A resource action other than meta-data completes (whether successfully or

not).
select_attributes A transient attribute value update is sent to the CIB.

Alert configuration to receive only node events and fencing events

<configuration>
<alerts>

<alert id="my-alert" path="/path/to/my-script.sh">
<select>

<select_nodes />
<select_fencing />

</select>
<recipient id="my-alert-recipient1"

value="someuser@example.com"/>
</alert>

</alerts>
</configuration>

With <select_attributes> (the only event type not enabled by default), the agent will receive alerts when
a node attribute changes. If you wish the agent to be called only when certain attributes change, you can
configure that as well.

126 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Alert configuration to be called when certain node attributes change

<configuration>
<alerts>

<alert id="my-alert" path="/path/to/my-script.sh">
<select>

<select_attributes>
<attribute id="alert-standby" name="standby" />
<attribute id="alert-shutdown" name="shutdown" />

</select_attributes>
</select>
<recipient id="my-alert-recipient1" value="someuser@example.com"/>

</alert>
</alerts>

</configuration>

Node attribute alerts are currently considered experimental. Alerts may be limited to attributes set via
attrd_updater, and agents may be called multiple times with the same attribute value.

2.14 Reusing Parts of the Configuration

Pacemaker provides multiple ways to simplify the configuration XML by reusing parts of it in multiple places.

Besides simplifying the XML, this also allows you to manipulate multiple configuration elements with a
single reference.

2.14.1 Reusing Resource Definitions

If you want to create lots of resources with similar configurations, defining a resource template simplifies the
task. Once defined, it can be referenced in primitives or in certain types of constraints.

Configuring Resources with Templates

The primitives referencing the template will inherit all meta-attributes, instance attributes, utilization at-
tributes and operations defined in the template. And you can define specific attributes and operations for
any of the primitives. If any of these are defined in both the template and the primitive, the values defined
in the primitive will take precedence over the ones defined in the template.

Hence, resource templates help to reduce the amount of configuration work. If any changes are needed, they
can be done to the template definition and will take effect globally in all resource definitions referencing that
template.

Resource templates have a syntax similar to that of primitives.

Resource template for a migratable Xen virtual machine

2.14. Reusing Parts of the Configuration 127



Pacemaker Explained, Release 3.0.0

<template id="vm-template" class="ocf" provider="heartbeat" type="Xen">
<meta_attributes id="vm-template-meta_attributes">
<nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/>

</meta_attributes>
<utilization id="vm-template-utilization">
<nvpair id="vm-template-utilization-memory" name="memory" value="512"/>

</utilization>
<operations>
<op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
<op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>

</operations>
</template>

Once you define a resource template, you can use it in primitives by specifying the template property.

Xen primitive resource using a resource template

<primitive id="vm1" template="vm-template">
<instance_attributes id="vm1-instance_attributes">
<nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
<nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/>

</instance_attributes>
</primitive>

In the example above, the new primitive vm1 will inherit everything from vm-template. For example, the
equivalent of the above two examples would be:

Equivalent Xen primitive resource not using a resource template

<primitive id="vm1" class="ocf" provider="heartbeat" type="Xen">
<meta_attributes id="vm-template-meta_attributes">
<nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/>

</meta_attributes>
<utilization id="vm-template-utilization">
<nvpair id="vm-template-utilization-memory" name="memory" value="512"/>

</utilization>
<operations>
<op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
<op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>

</operations>
<instance_attributes id="vm1-instance_attributes">
<nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
<nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/>

</instance_attributes>
</primitive>

If you want to overwrite some attributes or operations, add them to the particular primitive’s definition.

Xen resource overriding template values

128 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

<primitive id="vm2" template="vm-template">
<meta_attributes id="vm2-meta_attributes">
<nvpair id="vm2-meta_attributes-allow-migrate" name="allow-migrate" value="false"/>

</meta_attributes>
<utilization id="vm2-utilization">
<nvpair id="vm2-utilization-memory" name="memory" value="1024"/>

</utilization>
<instance_attributes id="vm2-instance_attributes">
<nvpair id="vm2-instance_attributes-name" name="name" value="vm2"/>
<nvpair id="vm2-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm2"/>

</instance_attributes>
<operations>
<op id="vm2-monitor-30s" interval="30s" name="monitor" timeout="120s"/>
<op id="vm2-stop-0" interval="0" name="stop" timeout="60s"/>

</operations>
</primitive>

In the example above, the new primitive vm2 has special attribute values. Its monitor operation has a longer
timeout and interval, and the primitive has an additional stop operation.

To see the resulting definition of a resource, run:

# crm_resource --query-xml --resource vm2

To see the raw definition of a resource in the CIB, run:

# crm_resource --query-xml-raw --resource vm2

Using Templates in Constraints

A resource template can be referenced in the following types of constraints:

• order constraints (see Specifying the Order in which Resources Should Start/Stop)

• colocation constraints (see Placing Resources Relative to other Resources)

• rsc_ticket constraints (for multi-site clusters as described in Configuring Ticket Dependencies)

Resource templates referenced in constraints stand for all primitives which are derived from that template.
This means, the constraint applies to all primitive resources referencing the resource template. Referencing
resource templates in constraints is an alternative to resource sets and can simplify the cluster configuration
considerably.

For example, given the example templates earlier in this chapter:

<rsc_colocation id="vm-template-colo-base-rsc" rsc="vm-template" rsc-role="Started" with-rsc="base-
↪→rsc" score="INFINITY"/>

would colocate all VMs with base-rsc and is the equivalent of the following constraint configuration:

<rsc_colocation id="vm-colo-base-rsc" score="INFINITY">
<resource_set id="vm-colo-base-rsc-0" sequential="false" role="Started">
<resource_ref id="vm1"/>
<resource_ref id="vm2"/>

</resource_set>
<resource_set id="vm-colo-base-rsc-1">

(continues on next page)

2.14. Reusing Parts of the Configuration 129



Pacemaker Explained, Release 3.0.0

(continued from previous page)
<resource_ref id="base-rsc"/>

</resource_set>
</rsc_colocation>

Note: In a colocation constraint, only one template may be referenced from either rsc or with-rsc; the
other reference must be a regular resource.

Using Templates in Resource Sets

Resource templates can also be referenced in resource sets.

For example, given the example templates earlier in this section, then:

<rsc_order id="order1" score="INFINITY">
<resource_set id="order1-0">
<resource_ref id="base-rsc"/>
<resource_ref id="vm-template"/>
<resource_ref id="top-rsc"/>

</resource_set>
</rsc_order>

is the equivalent of the following constraint using a sequential resource set:

<rsc_order id="order1" score="INFINITY">
<resource_set id="order1-0">
<resource_ref id="base-rsc"/>
<resource_ref id="vm1"/>
<resource_ref id="vm2"/>
<resource_ref id="top-rsc"/>

</resource_set>
</rsc_order>

Or, if the resources referencing the template can run in parallel, then:

<rsc_order id="order2" score="INFINITY">
<resource_set id="order2-0">
<resource_ref id="base-rsc"/>

</resource_set>
<resource_set id="order2-1" sequential="false">
<resource_ref id="vm-template"/>

</resource_set>
<resource_set id="order2-2">
<resource_ref id="top-rsc"/>

</resource_set>
</rsc_order>

is the equivalent of the following constraint configuration:

<rsc_order id="order2" score="INFINITY">
<resource_set id="order2-0">
<resource_ref id="base-rsc"/>

</resource_set>
<resource_set id="order2-1" sequential="false">

(continues on next page)

130 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

(continued from previous page)
<resource_ref id="vm1"/>
<resource_ref id="vm2"/>

</resource_set>
<resource_set id="order2-2">
<resource_ref id="top-rsc"/>

</resource_set>
</rsc_order>

2.14.2 Reusing Rules, Options and Sets of Operations

Sometimes a number of constraints need to use the same set of rules, and resources need to set the same
options and parameters. To simplify this situation, you can refer to an existing object using an id-ref
instead of an id.

So if for one resource you have

<rsc_location id="WebServer-connectivity" rsc="Webserver">
<rule id="ping-prefer-rule" score-attribute="pingd" >
<expression id="ping-prefer" attribute="pingd" operation="defined"/>
</rule>

</rsc_location>

Then instead of duplicating the rule for all your other resources, you can instead specify:

Referencing rules from other constraints

<rsc_location id="WebDB-connectivity" rsc="WebDB">
<rule id-ref="ping-prefer-rule"/>

</rsc_location>

Important: The cluster will insist that the rule exists somewhere. Attempting to add a reference to
a nonexistent id will cause a validation failure, as will attempting to remove a rule with an id that is
referenced elsewhere.

Some rule syntax is allowed only in certain contexts. Validation cannot ensure that the referenced rule is
allowed in the context of the rule containing id-ref, so such errors will be caught (and logged) only after
the new configuration is accepted. It is the administrator’s reponsibility to check for these.

The same principle applies for meta_attributes and instance_attributes as illustrated in the example
below:

Referencing attributes, options, and operations from other resources

2.14. Reusing Parts of the Configuration 131



Pacemaker Explained, Release 3.0.0

<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
<instance_attributes id="mySpecialRsc-attrs" score="1" >
<nvpair id="default-interface" name="interface" value="eth0"/>
<nvpair id="default-port" name="port" value="9999"/>

</instance_attributes>
<meta_attributes id="mySpecialRsc-options">
<nvpair id="failure-timeout" name="failure-timeout" value="5m"/>
<nvpair id="migration-threshold" name="migration-threshold" value="1"/>
<nvpair id="stickiness" name="resource-stickiness" value="0"/>

</meta_attributes>
<operations id="health-checks">

<op id="health-check" name="monitor" interval="60s"/>
<op id="health-check" name="monitor" interval="30min"/>

</operations>
</primitive>
<primitive id="myOtherRsc" class="ocf" type="Other" provider="me">

<instance_attributes id-ref="mySpecialRsc-attrs"/>
<meta_attributes id-ref="mySpecialRsc-options"/>
<operations id-ref="health-checks"/>

</primitive>

id-ref can similarly be used with resource_set (in any constraint type), nvpair, and operations.

2.14.3 Tagging Configuration Elements

Pacemaker allows you to tag any configuration element that has an XML ID.

The main purpose of tagging is to support higher-level user interface tools; Pacemaker itself only uses tags
within constraints. Therefore, what you can do with tags mostly depends on the tools you use.

Configuring Tags

A tag is simply a named list of XML IDs.

Tag referencing three resources

<tags>
<tag id="all-vms">
<obj_ref id="vm1"/>
<obj_ref id="vm2"/>
<obj_ref id="vm3"/>

</tag>
</tags>

What you can do with this new tag depends on what your higher-level tools support. For example, a tool
might allow you to enable or disable all of the tagged resources at once, or show the status of just the tagged
resources.

A single configuration element can be listed in any number of tags.

Important: If listing nodes in a tag, you must list the node’s id, not name.

132 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Using Tags in Constraints and Resource Sets

Pacemaker itself only uses tags in constraints. If you supply a tag name instead of a resource name in any
constraint, the constraint will apply to all resources listed in that tag.

Constraint using a tag

<rsc_order id="order1" first="storage" then="all-vms" kind="Mandatory" />

In the example above, assuming the all-vms tag is defined as in the previous example, the constraint will
behave the same as:

Equivalent constraints without tags

<rsc_order id="order1-1" first="storage" then="vm1" kind="Mandatory" />
<rsc_order id="order1-2" first="storage" then="vm2" kind="Mandatory" />
<rsc_order id="order1-3" first="storage" then="vm3" kind="Mandatory" />

A tag may be used directly in the constraint, or indirectly by being listed in a resource set used in the
constraint. When used in a resource set, an expanded tag will honor the set’s sequential property.

Filtering With Tags

The crm_mon tool can be used to display lots of information about the state of the cluster. On large or
complicated clusters, this can include a lot of information, which makes it difficult to find the one thing you
are interested in. The --resource= and --node= command line options can be used to filter results. In their
most basic usage, these options take a single resource or node name. However, they can also be supplied
with a tag name to display several objects at once.

For instance, given the following CIB section:

<resources>
<primitive class="stonith" id="Fencing" type="fence_xvm"/>
<primitive class="ocf" id="dummy" provider="pacemaker" type="Dummy"/>
<group id="inactive-group">
<primitive class="ocf" id="inactive-dummy-1" provider="pacemaker" type="Dummy"/>
<primitive class="ocf" id="inactive-dummy-2" provider="pacemaker" type="Dummy"/>

</group>
<clone id="inactive-clone">
<primitive id="inactive-dhcpd" class="systemd" type="dhcpd"/>

</clone>
</resources>
<tags>

<tag id="inactive-rscs">
<obj_ref id="inactive-group"/>
<obj_ref id="inactive-clone"/>

</tag>
</tags>

The following would be output for crm_mon --resource=inactive-rscs -r:

2.14. Reusing Parts of the Configuration 133



Pacemaker Explained, Release 3.0.0

Cluster Summary:
* Stack: corosync
* Current DC: cluster02 (version 2.0.4-1.e97f9675f.git.el7-e97f9675f) - partition with quorum
* Last updated: Tue Oct 20 16:09:01 2020
* Last change: Tue May 5 12:04:36 2020 by hacluster via crmd on cluster01
* 5 nodes configured
* 27 resource instances configured (4 DISABLED)

Node List:
* Online: [ cluster01 cluster02 ]

Full List of Resources:
* Clone Set: inactive-clone [inactive-dhcpd] (disabled):
* Stopped (disabled): [ cluster01 cluster02 ]

* Resource Group: inactive-group (disabled):
* inactive-dummy-1 (ocf::pacemaker:Dummy): Stopped (disabled)
* inactive-dummy-2 (ocf::pacemaker:Dummy): Stopped (disabled)

2.15 Status

Pacemaker automatically generates a status section in the CIB (inside the cib element, at the same level
as configuration). The status is transient, and is not stored to disk with the rest of the CIB.

The section’s structure and contents are internal to Pacemaker and subject to change from release to release.
Its often obscure element and attribute names are kept for historical reasons, to maintain compatibility with
older versions during rolling upgrades.

Users should not modify the section directly, though various command-line tool options affect it indirectly.

2.15.1 Node State

The status element contains node_state elements for each node in the cluster (and potentially nodes that
have been removed from the configuration since the cluster started). The node_state element has attributes
that allow the cluster to determine whether the node is healthy.

Example minimal node state entry

<node_state id="1" uname="cl-virt-1" in_ccm="1721760952" crmd="1721760952" crm-debug-origin=
↪→"controld_update_resource_history" join="member" expected="member">
<transient_attributes id="1"/>
<lrm id="1"/>
</node_state>

Table 45: Attributes of a node_state Element
Name Type Description
id text Node ID (identical to id of corresponding node element in the

configuration section)
uname text Node name (identical to uname of corresponding node element

in the configuration section)
Continued on next page

134 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 45 – continued from previous page
Name Type Description
in_ccm epoch time (since

2.1.7; previously
boolean)

If the node’s controller is currently in the cluster layer’s mem-
bership, this is the epoch time at which it joined (or 1 if the
node is in the process of leaving the cluster), otherwise 0 (since
2.1.7; previously, it was “true” or “false”)

crmd epoch time (since
2.1.7; previously
an enumeration)

If the node’s controller is currently in the cluster layer’s con-
troller messaging group, this is the epoch time at which it
joined, otherwise 0 (since 2.1.7; previously, the value was ei-
ther “online” or “offline”)

crm-debug-origin text Name of the source code function that recorded this
node_state element (for debugging)

join enumeration Current status of node’s controller join sequence (and thus
whether it is eligible to run resources). Allowed values:

• down: Not yet joined
• pending: In the process of joining or leaving
• member: Fully joined
• banned: Rejected by DC

expected enumeration What cluster expects join to be in the immediate future. Al-
lowed values are same as for join.

2.15.2 Transient Node Attributes

The transient_attributes section specifies transient Node Attributes. In addition to any values set by
the administrator or resource agents using the attrd_updater or crm_attribute tools, the cluster stores
various state information here.

Example transient node attributes for a node

<transient_attributes id="cl-virt-1">
<instance_attributes id="status-cl-virt-1">

<nvpair id="status-cl-virt-1-pingd" name="pingd" value="3"/>
<nvpair id="status-cl-virt-1-fail-count-pingd:0.monitor_30000" name="fail-count-pingd:0

↪→#monitor_30000" value="1"/>
<nvpair id="status-cl-virt-1-last-failure-pingd:0" name="last-failure-pingd:0" value=

↪→"1239009742"/>
</instance_attributes>

</transient_attributes>

2.15.3 Node History

Each node_state element contains an lrm element with a history of certain resource actions performed on
the node. The lrm element contains an lrm_resources element.

Resource History

The lrm_resources element contains an lrm_resource element for each resource that has had an action
performed on the node.

2.15. Status 135



Pacemaker Explained, Release 3.0.0

An lrm_resource entry has attributes allowing the cluster to stop the resource safely even if it is removed
from the configuration. Specifically, the resource’s id, class, type and provider are recorded.

Action History

Each lrm_resource element contains an lrm_rsc_op element for each recorded action performed for that
resource on that node. (Not all actions are recorded, just enough to determine the resource’s state.)

Table 46: Attributes of an lrm_rsc_op element
Name Type Description
id text Identifier for the history entry constructed from the resource

ID, action name or history entry type, and action interval.
operation_key text Identifier for the action that was executed, constructed from

the resource ID, action name, and action interval.
operation text The name of the action the history entry is for
crm-debug-origin text Name of the source code function that recorded this entry (for

debugging)
crm_feature_set version The Pacemaker feature set used to record this entry.
transition-key text A concatenation of the action’s transition graph action num-

ber, the transition graph number, the action’s expected result,
and the UUID of the controller instance that scheduled it.

transition-magic text A concatenation of op-status, rc-code, and
transition-key.

exit-reason text An error message (if available) from the resource agent or Pace-
maker if the action did not return success.

on_node text The name of the node that executed the action (identical to
the uname of the enclosing node_state element)

call-id integer A node-specific counter used to determine the order in which
actions were executed.

rc-code integer The resource agent’s exit status for this action. Refer to the
Resource Agents chapter of Pacemaker Administration for how
these values are interpreted.

op-status integer The execution status of this action. The meanings of these
codes are internal to Pacemaker.

interval nonnegative inte-
ger

If the action is recurring, its frequency (in milliseconds), oth-
erwise 0.

last-rc-change epoch time Node-local time at which the action first returned the current
value of rc-code.

exec-time integer Time (in seconds) that action execution took (if known)
queue-time integer Time (in seconds) that action was queued in the local executor

(if known)
op-digest text If present, this is a hash of the parameters passed to the ac-

tion. If a hash of the currently configured parameters does
not match this, that means the resource configuration changed
since the action was performed, and the resource must be
reloaded or restarted.

op-restart-digest text If present, the resource agent supports reloadable parameters,
and this is a hash of the non-reloadable parameters passed to
the action. This allows the cluster to choose between reload
and restart when one is needed.

Continued on next page

136 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

Table 46 – continued from previous page
Name Type Description
op-secure-digest text If present, the resource agent marks some parameters as sensi-

tive, and this is a hash of the non-sensitive parameters passed
to the action. This allows the value of sensitive parameters to
be removed from a saved copy of the CIB while still allowing
scheduler simulations to be performed on that copy.

Simple Operation History Example

A monitor operation (determines current state of the apcstonith resource)

<lrm_resource id="apcstonith" type="fence_apc_snmp" class="stonith">
<lrm_rsc_op id="apcstonith_monitor_0" operation="monitor" call-id="2"
rc-code="7" op-status="0" interval="0"
crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
op-digest="2e3da9274d3550dc6526fb24bfcbcba0"
transition-key="22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
transition-magic="0:7;22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
last-rc-change="1239008085" exec-time="10" queue-time="0"/>

</lrm_resource>

The above example shows the history entry for a probe (non-recurring monitor operation) for the apcstonith
resource.

The cluster schedules probes for every configured resource on a node when the node first starts, in order to
determine the resource’s current state before it takes any further action.

From the transition-key, we can see that this was the 22nd action of the 2nd graph produced by this
instance of the controller (2668bbeb-06d5-40f9-936d-24cb7f87006a).

The third field of the transition-key contains a 7, which indicates that the cluster expects to find the
resource inactive. By looking at the rc-code property, we see that this was the case.

As that is the only action recorded for this node, we can conclude that the cluster started the resource
elsewhere.

Complex Operation History Example

Resource history of a pingd clone with multiple entries

<lrm_resource id="pingd:0" type="pingd" class="ocf" provider="pacemaker">
<lrm_rsc_op id="pingd:0_monitor_30000" operation="monitor" call-id="34"
rc-code="0" op-status="0" interval="30000"
crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
transition-key="10:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
last-rc-change="1239009741" exec-time="10" queue-time="0"/>

<lrm_rsc_op id="pingd:0_stop_0" operation="stop"
crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" call-id="32"
rc-code="0" op-status="0" interval="0"
transition-key="11:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
last-rc-change="1239009741" exec-time="10" queue-time="0"/>

<lrm_rsc_op id="pingd:0_start_0" operation="start" call-id="33"
rc-code="0" op-status="0" interval="0"
crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
transition-key="31:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
last-rc-change="1239009741" exec-time="10" queue-time="0" />

<lrm_rsc_op id="pingd:0_monitor_0" operation="monitor" call-id="3"
rc-code="0" op-status="0" interval="0"
crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
transition-key="23:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
last-rc-change="1239008085" exec-time="20" queue-time="0"/>

</lrm_resource>

2.15. Status 137



Pacemaker Explained, Release 3.0.0

When more than one history entry exists, it is important to first sort them by call-id before interpreting
them.

Once sorted, the above example can be summarized as:

1. A non-recurring monitor operation returning 7 (not running), with a call-id of 3

2. A stop operation returning 0 (success), with a call-id of 32

3. A start operation returning 0 (success), with a call-id of 33

4. A recurring monitor returning 0 (success), with a call-id of 34

The cluster processes each history entry to build up a picture of the resource’s state. After the first and
second entries, it is considered stopped, and after the third it considered active.

Based on the last operation, we can tell that the resource is currently active.

Additionally, from the presence of a stop operation with a lower call-id than that of the start operation,
we can conclude that the resource has been restarted. Specifically this occurred as part of actions 11 and 31
of transition 11 from the controller instance with the key 2668bbeb.... This information can be helpful for
locating the relevant section of the logs when looking for the source of a failure.

2.16 Multi-Site Clusters and Tickets

Apart from local clusters, Pacemaker also supports multi-site clusters. That means you can have multiple,
geographically dispersed sites, each with a local cluster. Failover between these clusters can be coordinated
manually by the administrator, or automatically by a higher-level entity called a Cluster Ticket Registry
(CTR).

2.16.1 Challenges for Multi-Site Clusters

Typically, multi-site environments are too far apart to support synchronous communication and data repli-
cation between the sites. That leads to significant challenges:

• How do we make sure that a cluster site is up and running?

• How do we make sure that resources are only started once?

• How do we make sure that quorum can be reached between the different sites and a split-brain scenario
avoided?

• How do we manage failover between sites?

• How do we deal with high latency in case of resources that need to be stopped?

In the following sections, learn how to meet these challenges.

2.16.2 Conceptual Overview

Multi-site clusters can be considered as “overlay” clusters where each cluster site corresponds to a cluster
node in a traditional cluster. The overlay cluster can be managed by a CTR in order to guarantee that any
cluster resource will be active on no more than one cluster site. This is achieved by using tickets that are
treated as failover domain between cluster sites, in case a site should be down.

138 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

The following sections explain the individual components and mechanisms that were introduced for multi-site
clusters in more detail.

Ticket

Tickets are, essentially, cluster-wide attributes. A ticket grants the right to run certain resources on a specific
cluster site. Resources can be bound to a certain ticket by rsc_ticket constraints. Only if the ticket is
available at a site can the respective resources be started there. Vice versa, if the ticket is revoked, the
resources depending on that ticket must be stopped.

The ticket thus is similar to a site quorum, i.e. the permission to manage/own resources associated with that
site. (One can also think of the current have-quorum flag as a special, cluster-wide ticket that is granted in
case of node majority.)

Tickets can be granted and revoked either manually by administrators (which could be the default for classic
enterprise clusters), or via the automated CTR mechanism described below.

A ticket can only be owned by one site at a time. Initially, none of the sites has a ticket. Each ticket must
be granted once by the cluster administrator.

The presence or absence of tickets for a site is stored in the CIB as a cluster status. With regards to a certain
ticket, there are only two states for a site: true (the site has the ticket) or false (the site does not have the
ticket). The absence of a certain ticket (during the initial state of the multi-site cluster) is the same as the
value false.

Dead Man Dependency

A site can only activate resources safely if it can be sure that the other site has deactivated them. However
after a ticket is revoked, it can take a long time until all resources depending on that ticket are stopped
“cleanly”, especially in case of cascaded resources. To cut that process short, the concept of a Dead Man
Dependency was introduced.

If a dead man dependency is in force, if a ticket is revoked from a site, the nodes that are hosting dependent
resources are fenced. This considerably speeds up the recovery process of the cluster and makes sure that
resources can be migrated more quickly.

This can be configured by specifying a loss-policy="fence" in rsc_ticket constraints.

Cluster Ticket Registry

A CTR is a coordinated group of network daemons that automatically handles granting, revoking, and timing
out tickets (instead of the administrator revoking the ticket somewhere, waiting for everything to stop, and
then granting it on the desired site).

Pacemaker does not implement its own CTR, but interoperates with external software designed for that
purpose (similar to how resource and fencing agents are not directly part of pacemaker).

Participating clusters run the CTR daemons, which connect to each other, exchange information about their
connectivity, and vote on which sites gets which tickets.

A ticket is granted to a site only once the CTR is sure that the ticket has been relinquished by the previous
owner, implemented via a timer in most scenarios. If a site loses connection to its peers, its tickets time out
and recovery occurs. After the connection timeout plus the recovery timeout has passed, the other sites are
allowed to re-acquire the ticket and start the resources again.

This can also be thought of as a “quorum server”, except that it is not a single quorum ticket, but several.

2.16. Multi-Site Clusters and Tickets 139



Pacemaker Explained, Release 3.0.0

Configuration Replication

As usual, the CIB is synchronized within each cluster, but it is not synchronized across cluster sites of a
multi-site cluster. You have to configure the resources that will be highly available across the multi-site
cluster for every site accordingly.

2.16.3 Configuring Ticket Dependencies

The rsc_ticket constraint lets you specify the resources depending on a certain ticket. Together with the
constraint, you can set a loss-policy that defines what should happen to the respective resources if the
ticket is revoked.

The attribute loss-policy can have the following values:

• fence: Fence the nodes that are running the relevant resources.

• stop: Stop the relevant resources.

• freeze: Do nothing to the relevant resources.

• demote: Demote relevant resources that are running in the promoted role.

Constraint that fences node if ticketA is revoked

<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" ticket="ticketA" loss-policy="fence"/>

The example above creates a constraint with the ID rsc1-req-ticketA. It defines that the resource rsc1
depends on ticketA and that the node running the resource should be fenced if ticketA is revoked.

If resource rsc1 were a promotable resource, you might want to configure that only being in the promoted
role depends on ticketA. With the following configuration, rsc1 will be demoted if ticketA is revoked:

Constraint that demotes rsc1 if ticketA is revoked

<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" rsc-role="Promoted" ticket="ticketA" loss-policy=
↪→"demote"/>

You can create multiple rsc_ticket constraints to let multiple resources depend on the same ticket. However,
rsc_ticket also supports resource sets (see Resource Sets), so one can easily list all the resources in one
rsc_ticket constraint instead.

Ticket constraint for multiple resources

<rsc_ticket id="resources-dep-ticketA" ticket="ticketA" loss-policy="fence">
<resource_set id="resources-dep-ticketA-0" role="Started">
<resource_ref id="rsc1"/>
<resource_ref id="group1"/>
<resource_ref id="clone1"/>

</resource_set>
<resource_set id="resources-dep-ticketA-1" role="Promoted">
<resource_ref id="ms1"/>

</resource_set>
</rsc_ticket>

140 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

In the example above, there are two resource sets, so we can list resources with different roles in a single
rsc_ticket constraint. There’s no dependency between the two resource sets, and there’s no dependency
among the resources within a resource set. Each of the resources just depends on ticketA.

Referencing resource templates in rsc_ticket constraints, and even referencing them within resource sets,
is also supported.

If you want other resources to depend on further tickets, create as many constraints as necessary with
rsc_ticket.

2.16.4 Managing Multi-Site Clusters

Granting and Revoking Tickets Manually

You can grant tickets to sites or revoke them from sites manually. If you want to re-distribute a ticket, you
should wait for the dependent resources to stop cleanly at the previous site before you grant the ticket to
the new site.

Use the crm_ticket command line tool to grant and revoke tickets.

To grant a ticket to this site:

# crm_ticket --ticket ticketA --grant

To revoke a ticket from this site:

# crm_ticket --ticket ticketA --revoke

Important: If you are managing tickets manually, use the crm_ticket command with great care, because
it cannot check whether the same ticket is already granted elsewhere.

Granting and Revoking Tickets via a Cluster Ticket Registry

We will use Booth here as an example of software that can be used with pacemaker as a Cluster Ticket
Registry. Booth implements the Raft algorithm to guarantee the distributed consensus among different
cluster sites, and manages the ticket distribution (and thus the failover process between sites).

Each of the participating clusters and arbitrators runs the Booth daemon boothd.

An arbitrator is the multi-site equivalent of a quorum-only node in a local cluster. If you have a setup with
an even number of sites, you need an additional instance to reach consensus about decisions such as failover
of resources across sites. In this case, add one or more arbitrators running at additional sites. Arbitrators
are single machines that run a booth instance in a special mode. An arbitrator is especially important for a
two-site scenario, otherwise there is no way for one site to distinguish between a network failure between it
and the other site, and a failure of the other site.

The most common multi-site scenario is probably a multi-site cluster with two sites and a single arbitrator
on a third site. However, technically, there are no limitations with regards to the number of sites and the
number of arbitrators involved.

Boothd at each site connects to its peers running at the other sites and exchanges connectivity details.
Once a ticket is granted to a site, the booth mechanism will manage the ticket automatically: If the site
which holds the ticket is out of service, the booth daemons will vote which of the other sites will get the
ticket. To protect against brief connection failures, sites that lose the vote (either explicitly or implicitly by
being disconnected from the voting body) need to relinquish the ticket after a time-out. Thus, it is made

2.16. Multi-Site Clusters and Tickets 141

https://github.com/ClusterLabs/booth
http://en.wikipedia.org/wiki/Raft_%28computer_science%29


Pacemaker Explained, Release 3.0.0

sure that a ticket will only be re-distributed after it has been relinquished by the previous site. The resources
that depend on that ticket will fail over to the new site holding the ticket. The nodes that have run the
resources before will be treated according to the loss-policy you set within the rsc_ticket constraint.

Before the booth can manage a certain ticket within the multi-site cluster, you initially need to grant it to a
site manually via the booth command-line tool. After you have initially granted a ticket to a site, boothd
will take over and manage the ticket automatically.

Important: The booth command-line tool can be used to grant, list, or revoke tickets and can be run on
any machine where boothd is running. If you are managing tickets via Booth, use only booth for manual
intervention, not crm_ticket. That ensures the same ticket will only be owned by one cluster site at a
time.

Booth Requirements

• All clusters that will be part of the multi-site cluster must be based on Pacemaker.

• Booth must be installed on all cluster nodes and on all arbitrators that will be part of the multi-site
cluster.

• Nodes belonging to the same cluster site should be synchronized via NTP. However, time synchroniza-
tion is not required between the individual cluster sites.

General Management of Tickets

Display the information of tickets:

# crm_ticket --info

Or you can monitor them with:

# crm_mon --tickets

Display the rsc_ticket constraints that apply to a ticket:

# crm_ticket --ticket ticketA --constraints

When you want to do maintenance or manual switch-over of a ticket, revoking the ticket would trigger the
loss policies. If loss-policy="fence", the dependent resources could not be gracefully stopped/demoted,
and other unrelated resources could even be affected.

The proper way is making the ticket standby first with:

# crm_ticket --ticket ticketA --standby

Then the dependent resources will be stopped or demoted gracefully without triggering the loss policies.

If you have finished the maintenance and want to activate the ticket again, you can run:

# crm_ticket --ticket ticketA --activate

142 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

2.16.5 For more information

• SUSE’s Geo Clustering quick start

• Booth

2.17 Sample Configurations

2.17.1 Empty

An Empty Configuration

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates=
↪→"0">
<configuration>
<crm_config/>
<nodes/>
<resources/>
<constraints/>

</configuration>
<status/>

</cib>

2.17.2 Simple

A simple configuration with two nodes, some cluster options and a resource

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates=
↪→"0">
<configuration>
<crm_config>

<cluster_property_set id="cib-bootstrap-options">
<nvpair id="option-1" name="symmetric-cluster" value="true"/>
<nvpair id="option-2" name="no-quorum-policy" value="stop"/>
<nvpair id="option-3" name="stonith-enabled" value="0"/>

</cluster_property_set>
</crm_config>
<nodes>

<node id="xxx" uname="c001n01" type="normal"/>
<node id="yyy" uname="c001n02" type="normal"/>

</nodes>
<resources>

<primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
<operations>
<op id="myAddr-monitor" name="monitor" interval="300s"/>

</operations>
<instance_attributes id="myAddr-params">
<nvpair id="myAddr-ip" name="ip" value="192.0.2.10"/>

</instance_attributes>
</primitive>

</resources>
<constraints>

<rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01" score="INFINITY"/>
</constraints>
<rsc_defaults>

<meta_attributes id="rsc_defaults-options">
<nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
<nvpair id="rsc-default-2" name="migration-threshold" value="10"/>

</meta_attributes>
</rsc_defaults>
<op_defaults>

<meta_attributes id="op_defaults-options">
<nvpair id="op-default-1" name="timeout" value="30s"/>

</meta_attributes>
</op_defaults>

</configuration>
<status/>

</cib>

2.17. Sample Configurations 143

https://www.suse.com/documentation/sle-ha-geo-12/art_ha_geo_quick/data/art_ha_geo_quick.html
https://github.com/ClusterLabs/booth


Pacemaker Explained, Release 3.0.0

In the above example, we have one resource (an IP address) that we check every five minutes and will run
on host c001n01 until either the resource fails 10 times or the host shuts down.

2.17.3 Advanced Configuration

An advanced configuration with groups, clones and STONITH

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates=
↪→"0">
<configuration>
<crm_config>

<cluster_property_set id="cib-bootstrap-options">
<nvpair id="option-1" name="symmetric-cluster" value="true"/>
<nvpair id="option-2" name="no-quorum-policy" value="stop"/>
<nvpair id="option-3" name="stonith-enabled" value="true"/>

</cluster_property_set>
</crm_config>
<nodes>

<node id="xxx" uname="c001n01" type="normal"/>
<node id="yyy" uname="c001n02" type="normal"/>
<node id="zzz" uname="c001n03" type="normal"/>

</nodes>
<resources>

<primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
<operations>
<op id="myAddr-monitor" name="monitor" interval="300s"/>

</operations>
<instance_attributes id="myAddr-attrs">
<nvpair id="myAddr-attr-1" name="ip" value="192.0.2.10"/>

</instance_attributes>
</primitive>
<group id="myGroup">

<primitive id="database" class="systemd" type="mariadb">
<operations>
<op id="database-monitor" name="monitor" interval="300s"/>

</operations>
</primitive>
<primitive id="webserver" class="systemd" type="httpd">
<operations>
<op id="webserver-monitor" name="monitor" interval="300s"/>

</operations>
</primitive>

</group>
<clone id="STONITH">

<meta_attributes id="stonith-options">
<nvpair id="stonith-option-1" name="globally-unique" value="false"/>

</meta_attributes>
<primitive id="stonithclone" class="stonith" type="external/ssh">
<operations>

<op id="stonith-op-mon" name="monitor" interval="5s"/>
</operations>
<instance_attributes id="stonith-attrs">

<nvpair id="stonith-attr-1" name="hostlist" value="c001n01,c001n02"/>
</instance_attributes>

</primitive>
</clone>

</resources>
<constraints>

<rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01"
score="INFINITY"/>

<rsc_colocation id="group-with-ip" rsc="myGroup" with-rsc="myAddr"
score="INFINITY"/>

</constraints>
<op_defaults>

<meta_attributes id="op_defaults-options">
<nvpair id="op-default-1" name="timeout" value="30s"/>

</meta_attributes>
</op_defaults>
<rsc_defaults>

<meta_attributes id="rsc_defaults-options">
<nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
<nvpair id="rsc-default-2" name="migration-threshold" value="10"/>

</meta_attributes>
</rsc_defaults>

</configuration>
<status/>

</cib>

144 Chapter 2. Table of Contents



Pacemaker Explained, Release 3.0.0

2.17. Sample Configurations 145



Pacemaker Explained, Release 3.0.0

146 Chapter 2. Table of Contents



CHAPTER

THREE

INDEX

• genindex

• search

147



Pacemaker Explained, Release 3.0.0

148 Chapter 3. Index



INDEX

Symbols
#digests

node attribute, 34
#node-unfenced

node attribute, 34

A
Access Control List (ACL), 118

acl_group, 120
acl_permission, 119
acl_role, 118
acl_target, 119
acls, 118
role, 120

acl_group
id (attribute), 120
name (attribute), 120
XML element, 120

acl_permission
attribute (attribute), 119
description (attribute), 119, 124
id (attribute), 119
kind (attribute), 119
object-type (attribute), 119
reference (attribute), 119
XML element, 119
xpath (attribute), 119

acl_role
description (attribute), 118
id (attribute), 118
XML element, 118

acl_target
id (attribute), 120
name (attribute), 120
XML element, 119

acls
XML element, 118

action
history, 136
property, description, 46
property, enabled, 47
property, id, 46

property, interval, 46
property, interval-origin, 48
property, name, 46
property, on-fail, 47
property, record-pending, 48
property, role, 46
property, start-delay, 48
property, timeout, 46
resource_set attribute, 63

add-host
network attribute, 97

admin_epoch
cib, 21

agent
alert, 123

alert, 123
agent, 123
filters, 126
instance attributes, 125
meta-attribute, enabled, 124
meta-attribute, timeout, 125
meta-attribute, timestamp-format, 125
meta-attributes, 124
recipient, 124
XML element, 123

alerts
XML element, 123

allow-migrate
resource option, 41

allow-unhealthy-nodes
resource option, 41

Asymmetrical Clusters, 56
attribute

acl_permission attribute, 119
action (resource_set), 63
add-host (network), 97
attribute (acl_permission), 119
control-port (network), 97
description (acl_permission), 119, 124
description (acl_role), 118
description (bundle), 96
description (clone), 90

149



Pacemaker Explained, Release 3.0.0

description (group), 88
expression, 109
first (rsc_order), 58
first-action (rsc_order), 58
host-interface (network), 97
host-netmask (network), 97
id (acl_group), 120
id (acl_permission), 119
id (acl_role), 118
id (acl_target), 120
id (bundle), 96
id (cluster_property_set), 20
id (instance_attributes), 20
id (meta_attributes), 20
id (port-mapping), 98
id (resource_set), 63
id (role), 120
id (rsc_colocation), 60
id (rsc_location), 55
id (rsc_order), 58
id (storage-mapping), 98
id (utilization), 20
image (docker), 96
image (podman), 96
influence (rsc_colocation), 61
internal-port (port-mapping), 98
ip-range-start (network), 97
kind (acl_permission), 119
kind (resource_set), 63
kind (rsc_order), 59
name (acl_group), 120
name (acl_target), 120
network (docker), 96
network (podman), 96
node (rsc_location), 55
node-attribute (rsc_colocation), 60
object-type (acl_permission), 119
options (docker), 96
options (podman), 96
options (storage-mapping), 98
port (port-mapping), 98
promoted-max (docker), 96
promoted-max (podman), 96
range (port-mapping), 98
reference (acl_permission), 119
replicas (docker), 96
replicas (podman), 96
replicas-per-host (docker), 96
replicas-per-host (podman), 96
require-all (resource_set), 63
resource-discovery (rsc_location), 56
role (resource_set), 63
role (rsc_location), 56
rsc (rsc_colocation), 60

rsc (rsc_location), 55
rsc-pattern (rsc_location), 55
run-command (docker), 96
run-command (podman), 96
score (cluster_property_set), 20
score (instance_attributes), 20
score (meta_attributes), 20
score (resource_set), 63
score (rsc_colocation), 60
score (rsc_location), 55
score (utilization), 20
sequential (resource_set), 63
source-dir (storage-mapping), 98
source-dir-root (storage-mapping), 98
symmetrical (rsc)order), 59
target-dir (storage-mapping), 98
then (rsc_order), 58
then-action (rsc_order), 58
with-rsc (rsc_colocation), 60
XML element, 126
xpath (acl_permission), 119

B
batch-limit

cluster option, 23
boolean

type, 10
boolean-op

rule, 105
bundle

attribute, description, 96
attribute, id, 96
meta-attributes, 100
network, 97
node attributes, 100
primitive, 99
XML element, 96

C
call-id

lrm_rsc_op, 136
cib

admin_epoch, 21
cib-last-written, 21
dc-uuid, 21
epoch, 21
execution-date, 22
have-quorum, 21
num_updates, 21
remote-clear-port, 21
remote-tls-port, 21
validate-with, 21
XML element, 19

cib-last-written

150 Index



Pacemaker Explained, Release 3.0.0

cib, 21
CIB_pam_service

node option, 12
class

resource, 38
rsc_expression, 111

clone, 89
attribute, description, 90
constraint, 92
option, clone-max, 90
option, clone-min, 90
option, clone-node-max, 90
option, globally-unique, 90
option, interleave, 91
option, notify, 90
option, ordered, 91
option, promotable, 91
option, promoted-max, 91
option, promoted-node-max, 91
options, 90
ordering constraint, rsc-role, 60
ordering constraint, with-rsc-role, 60
property, id, 90
resource-stickiness, 94
XML element, 90

clone-max
clone option, 90

clone-min
clone option, 90

clone-node-max
clone option, 90

cluster option
batch-limit, 23
cluster-delay, 26
cluster-infrastructure, 22
cluster-ipc-limit, 26
cluster-name, 22
cluster-recheck-interval, 28
concurrent-fencing, 25
dc-deadtime, 26
dc-version, 22
election-timeout, 29
enable-acl, 27
enable-startup-probes, 24
fence-reaction, 26
have-watchdog, 25
join-finalization-timeout, 29
join-integration-timeout, 29
load-threshold, 23
maintenance-mode, 24
migration-limit, 23
no-quorum-policy, 23
node-action-limit, 23
node-health-base, 27

node-health-green, 27
node-health-red, 27
node-health-strategy, 27, 34
node-health-yellow, 27
node-pending-timeout, 26
pe-error-series-max, 27
pe-input-series-max, 27
pe-warn-series-max, 27
placement-strategy, 27
priority-fencing-delay, 26
rule, 114, 117
shutdown-escalation, 29
shutdown-lock, 28
shutdown-lock-limit, 28
start-failure-is-fatal, 24
startup-fencing, 29
stonith-action, 24
stonith-enabled, 24
stonith-max-attempts, 24
stonith-timeout, 24
stonith-watchdog-timeout, 25
stop-all-resources, 23
stop-orphan-actions, 24
stop-orphan-resources, 23
symmetric-cluster, 23
transition-delay, 29

cluster-delay
cluster option, 26

cluster-infrastructure
cluster option, 22

cluster-ipc-limit
cluster option, 26

cluster-name
cluster option, 22

cluster-recheck-interval
cluster option, 28

cluster_property_set
id, 20
score, 20

colocation, 59
concurrent-fencing

cluster option, 25
configuration

XML element, 10, 19
constraint, 54

colocation, 59
location, 55
ordering, 58
resource set, 62
rsc_colocation, 60
rsc_location, 55
rsc_order, 58

container-attribute-target
resource option, 41

Index 151



Pacemaker Explained, Release 3.0.0

control-port
network attribute, 97

critical
resource option, 39

crm-debug-origin
lrm_rsc_op, 136
node_state, 135

crm_feature_set
lrm_rsc_op, 136

crmd
node_state, 135

custom
node-health-strategy value, 35

D
date specification, 106
date/time

type, 10
date_expression

end, 105
id, 105
operation, 106
start, 105
XML element, 105

date_spec
hours, 106
id, 106
minutes, 106
monthdays, 106
months, 106
moon, 107
seconds, 106
weekdays, 106
weeks, 107
weekyears, 107
XML element, 106
yeardays, 106
years, 107

days
duration, 107

dc-deadtime
cluster option, 26

dc-uuid
cib, 21

dc-version
cluster option, 22

description
acl_permission attribute, 119, 124
acl_role attribute, 118
action property, 46
bundle attribute, 96
clone attribute, 90
group attribute, 88
op, 46

resource, 38
devices

fencing-level, 84
docker

attribute, image, 96
attribute, network, 96
attribute, options, 96
attribute, promoted-max, 96
attribute, replicas, 96
attribute, replicas-per-host, 96
attribute, run-command, 96
XML element, 96

duration, 107
days, 107
hours, 107
id, 107
minutes, 107
months, 107
seconds, 107
type, 10
weeks, 107
XML element, 107
years, 107

E
election-timeout

cluster option, 29
enable-acl

cluster option, 27
enable-startup-probes

cluster option, 24
enabled

action property, 47
alert meta-attribute, 124
op, 47

end
date_expression, 105

enumeration
type, 11

epoch
cib, 21

epoch_time
type, 11

exec-time
lrm_rsc_op, 136

execution-date
cib, 22

exit-reason
lrm_rsc_op, 136

expected
node_state, 135

expression
attribute, 109
id, 109

152 Index



Pacemaker Explained, Release 3.0.0

operation, 110
type, 110
value, 110
value-source, 110
XML element, 109

F
fail-count

node attribute, 33
failure-timeout

resource option, 41
fence-reaction

cluster option, 26
fencing, 70

agent, 71
alert, 123
configuration, 77
device, 70
special instance attributes, 71
topology, 84
unfencing, 76
why necessary, 70

fencing-level, 84
devices, 84
id, 84
index, 84
target, 84
target-attribute, 84
target-pattern, 84
target-value, 84

fencing-topology, 84
first

rsc_order attribute, 58
first-action

rsc_order attribute, 58

G
globally-unique

clone option, 90
green

node health attribute value, 34
group

attribute, description, 88
property, id, 88
resource-stickiness, 89
XML element, 88

guest node, 44

H
have-quorum

cib, 21
have-watchdog

cluster option, 25
history

action, 136
node, 135
resource, 135

host-interface
network attribute, 97

host-netmask
network attribute, 97

hours
date_spec, 106
duration, 107

I
id

acl_group attribute, 120
acl_permission attribute, 119
acl_role attribute, 118
acl_target attribute, 120
action property, 46
bundle attribute, 96
clone property, 90
cluster_property_set, 20
date_expression, 105
date_spec, 106
duration, 107
expression, 109
fencing-level, 84
group property, 88
instance_attributes, 20
lrm_rsc_op, 136
meta_attributes, 20
node_state, 134
op, 46
op_expression, 112
port-mapping attribute, 98
resource, 38
resource_set attribute, 63
role attribute, 120
rsc_colocation attribute, 60
rsc_expression, 111
rsc_location attribute, 55
rsc_order attribute, 58
rule, 104
storage-mapping attribute, 98
type, 11
utilization, 20

image
docker attribute, 96
podman attribute, 96

in_ccm
node_state, 135

index
fencing-level, 84

influence
rsc_colocation attribute, 61

Index 153



Pacemaker Explained, Release 3.0.0

instance attribute
alert instance attributes, 125
rule, 114

instance_attributes
id, 20
score, 20

integer
type, 11

interleave
clone option, 91

internal-port
port-mapping attribute, 98

interval
action property, 46
lrm_rsc_op, 136
op, 46
op_expression, 112

interval-origin
action property, 48
op, 48

ip-range-start
network attribute, 97

is-managed
resource option, 39

iso8601
type, 11

J
join

node_state, 135
join-finalization-timeout

cluster option, 29
join-integration-timeout

cluster option, 29

K
kind

acl_permission attribute, 119
resource_set attribute, 63
rsc_order attribute, 59

L
last-failure

node attribute, 33
last-rc-change

lrm_rsc_op, 136
Linux Standard Base

resources, 37
load-threshold

cluster option, 23
location constraint, 55

rule, 112
lrm

XML element, 135

lrm_resource
XML element, 135

lrm_resources
XML element, 135

lrm_rsc_op
call-id, 136
crm-debug-origin, 136
crm_feature_set, 136
exec-time, 136
exit-reason, 136
id, 136
interval, 136
last-rc-change, 136
on_node, 136
op-digest, 136
op-restart-digest, 136
op-secure-digest, 137
op-status, 136
operation, 136
operation_key, 136
queue-time, 136
rc-code, 136
transition-key, 136
transition-magic, 136
XML element, 136

LSB
resources, 37

M
maintenance

node attribute, 33
resource option, 40

maintenance-mode
cluster option, 24

meta-attribute
alert meta-attributes, 124
enabled (alert), 124
rule, 114
timeout (alert), 125
timestamp-format (alert), 125

meta_attributes
id, 20
score, 20

migrate-on-red
node-health-strategy value, 35

migration-limit
cluster option, 23

migration-threshold
resource meta-attribute, 52
resource option, 40

minutes
date_spec, 106
duration, 107

monthdays

154 Index



Pacemaker Explained, Release 3.0.0

date_spec, 106
months

date_spec, 106
duration, 107

moon
date_spec, 107

multiple-active
resource option, 41

N
name

acl_group attribute, 120
acl_target attribute, 120
action property, 46
op, 46
op_expression, 112

network
attribute
control-port, 97
host-interface, 97
host-netmask, 97

attribute, add-host, 97
attribute, ip-range-start, 97
docker attribute, 96
podman attribute, 96
XML element, 97

no-quorum-policy
cluster option, 23

node, 29
alert, 123
attribute, 31
cluster node, 29
guest, 44
health, 34
history, 135
name, 31
Pacemaker Remote, 30
quorum-only, 31
remote, 44
rsc_location attribute, 55
state, 134
transient attribute, 135

node attribute, 31
#digests, 34
#node-unfenced, 34
fail-count, 33
health, 34
health (green), 34
health (red), 34
health (score), 34
health (yellow), 34
last-failure, 33
maintenance, 33
probe_complete, 33

resource-discovery-enabled, 33
rule, 114
rule expression, 109
shutdown, 33
site-name, 33
standby, 33
terminate, 33
transient, 135

node option
CIB_pam_service, 12
PCMK_authkey_location, 16
PCMK_blackbox, 14
PCMK_ca_file, 15
PCMK_callgrind_enabled, 18
PCMK_cert_file, 15
PCMK_cluster_type, 18
PCMK_crl_file, 16
PCMK_debug, 13
PCMK_dh_max_bits, 17
PCMK_fail_fast, 14
PCMK_ipc_buffer, 18
PCMK_ipc_type, 18
PCMK_key_file, 16
PCMK_logfacility, 12
PCMK_logfile, 13
PCMK_logfile_mode, 13
PCMK_logpriority, 12
PCMK_node_action_limit, 14
PCMK_node_start_state, 14
PCMK_panic_action, 15
PCMK_remote_address, 15
PCMK_remote_pid1, 17
PCMK_remote_port, 15
PCMK_remote_schema_directory, 18
PCMK_schema_directory, 18
PCMK_stderr, 13
PCMK_tls_priorities, 17
PCMK_trace_blackbox, 14
PCMK_trace_files, 13
PCMK_trace_formats, 14
PCMK_trace_functions, 13
PCMK_trace_tags, 14
PCMK_valgrind_enabled, 18
SBD_SYNC_RESOURCE_STARTUP, 18
SBD_WATCHDOG_TIMEOUT, 18
VALGRIND_OPTS, 19

node-action-limit
cluster option, 23

node-attribute
rsc_colocation attribute, 60

node-health-base
cluster option, 27

node-health-green
cluster option, 27

Index 155



Pacemaker Explained, Release 3.0.0

node-health-red
cluster option, 27

node-health-strategy
cluster option, 27, 34
custom, 35
migrate-on-red, 35
none, 35
only-green, 35
progressive, 35

node-health-yellow
cluster option, 27

node-pending-timeout
cluster option, 26

node_state
crm-debug-origin, 135
crmd, 135
expected, 135
id, 134
in_ccm, 135
join, 135
uname, 134
XML element, 134

none
node-health-strategy value, 35

nonnegative integer
type, 11

notify
clone option, 90

num_updates
cib, 21

O
object-type

acl_permission attribute, 119
OCF

resources, 36
on-fail

action property, 47
op, 47

on_node
lrm_rsc_op, 136

only-green
node-health-strategy value, 35

op
description, 46
enabled, 47
id, 46
interval, 46
interval-origin, 48
name, 46
on-fail, 47
record-pending, 48
role, 46
start-delay, 48

timeout, 46
op-digest

lrm_rsc_op, 136
op-restart-digest

lrm_rsc_op, 136
op-secure-digest

lrm_rsc_op, 137
op-status

lrm_rsc_op, 136
op_expression

id, 112
interval, 112
name, 112
XML element, 111

Open Cluster Framework
resources, 36

operation
date_expression, 106
expression, 110
failure count, 52
failure recovery, 51
lrm_rsc_op, 136
rule expression, 111

operation defaults
rule, 114

operation_key
lrm_rsc_op, 136

Opt-In Clusters, 56
Opt-Out Clusters, 57
option

clone-max (clone), 90
clone-min (clone), 90
clone-node-max (clone), 90
globally-unique (clone), 90
interleave (clone), 91
notify (clone), 90
ordered (clone), 91
promotable (clone), 91
promoted-max (clone), 91
promoted-node-max (clone), 91

options
clone, 90
docker attribute, 96
podman attribute, 96
rule, 104
storage-mapping attribute, 98

ordered
clone option, 91

ordering constraint
rsc-role (clone), 60
with-rsc-role (clone), 60

P
Pacemaker Remote

156 Index



Pacemaker Explained, Release 3.0.0

guest node, 44
node, 30
remote node, 44

pcmk_action_limit, 73
PCMK_authkey_location

node option, 16
PCMK_blackbox

node option, 14
PCMK_ca_file

node option, 15
PCMK_callgrind_enabled

node option, 18
PCMK_cert_file

node option, 15
PCMK_cluster_type

node option, 18
PCMK_crl_file

node option, 16
PCMK_debug

node option, 13
pcmk_delay_base, 73
pcmk_delay_max, 73
PCMK_dh_max_bits

node option, 17
PCMK_fail_fast

node option, 14
pcmk_host_argument, 73
pcmk_host_check, 72
pcmk_host_list, 72
pcmk_host_map, 72
PCMK_ipc_buffer

node option, 18
PCMK_ipc_type

node option, 18
PCMK_key_file

node option, 16
pcmk_list_action, 74
pcmk_list_retries, 74
pcmk_list_timeout, 74
PCMK_logfacility

node option, 12
PCMK_logfile

node option, 13
PCMK_logfile_mode

node option, 13
PCMK_logpriority

node option, 12
pcmk_monitor_action, 75
pcmk_monitor_retries, 75
pcmk_monitor_timeout, 75
PCMK_node_action_limit

node option, 14
PCMK_node_start_state

node option, 14

pcmk_off_action, 74
pcmk_off_retries, 74
pcmk_off_timeout, 74
PCMK_panic_action

node option, 15
pcmk_reboot_action, 73
pcmk_reboot_retries, 74
pcmk_reboot_timeout, 73
PCMK_remote_address

node option, 15
PCMK_remote_pid1

node option, 17
PCMK_remote_port

node option, 15
PCMK_remote_schema_directory

node option, 18
PCMK_schema_directory

node option, 18
pcmk_status_action, 75
pcmk_status_retries, 75
pcmk_status_timeout, 75
PCMK_stderr

node option, 13
PCMK_tls_priorities

node option, 17
PCMK_trace_blackbox

node option, 14
PCMK_trace_files

node option, 13
PCMK_trace_formats

node option, 14
PCMK_trace_functions

node option, 13
PCMK_trace_tags

node option, 14
PCMK_valgrind_enabled

node option, 18
pe-error-series-max

cluster option, 27
pe-input-series-max

cluster option, 27
pe-warn-series-max

cluster option, 27
percentage

type, 11
placement-strategy

cluster option, 27
podman

attribute, image, 96
attribute, network, 96
attribute, options, 96
attribute, promoted-max, 96
attribute, replicas, 96
attribute, replicas-per-host, 96

Index 157



Pacemaker Explained, Release 3.0.0

attribute, run-command, 96
XML element, 96

port
port-mapping attribute, 98
remote node, 44
type, 11

port-mapping
attribute, id, 98
attribute, internal-port, 98
attribute, port, 98
attribute, range, 98
XML element, 97

priority
resource option, 39

priority-fencing-delay
cluster option, 26

probe_complete
node attribute, 33

progressive
node-health-strategy value, 35

promotable
clone option, 91

promotable clone, 90
constraint, 92

promoted-max
clone option, 91
docker attribute, 96
podman attribute, 96

promoted-node-max
clone option, 91

property
id (clone), 90
id (group), 88

provider
resource, 38
rsc_expression, 111

provides, 72

Q
queue-time

lrm_rsc_op, 136
quorum-only node, 31

R
range

port-mapping attribute, 98
type, 11

rc-code
lrm_rsc_op, 136

recipient
XML element, 124

reconnect_interval
remote node, 44

record-pending

action property, 48
op, 48

red
node health attribute value, 34

reference
acl_permission attribute, 119

reload, 53
reload-agent, 53
remote node, 44

port, 44
reconnect_interval, 44
server, 44

remote-addr
resource option, 45

remote-allow-migrate
resource option, 45

remote-clear-port
cib, 21

remote-connect-timeout
resource option, 45

remote-node
resource option, 44

remote-port
resource option, 45

remote-tls-port
cib, 21

replicas
docker attribute, 96
podman attribute, 96

replicas-per-host
docker attribute, 96
podman attribute, 96

require-all
resource_set attribute, 63

requires
resource option, 40

Resource
STONITH, 38
System Services, 37
Systemd, 37

resource, 36
action, 45
alert, 123
clone, 89
constraint, 54
failure count, 52
failure recovery, 51
history, 135
location relative to other resources, 59
LSB, 37
migration-threshold, 52
OCF, 36
operation, 45
option, allow-migrate, 41

158 Index



Pacemaker Explained, Release 3.0.0

option, allow-unhealthy-nodes, 41
option, container-attribute-target, 41
option, critical, 39
option, failure-timeout, 41
option, is-managed, 39
option, maintenance, 40
option, migration-threshold, 40
option, multiple-active, 41
option, priority, 39
option, remote-addr, 45
option, remote-allow-migrate, 45
option, remote-connect-timeout, 45
option, remote-node, 44
option, remote-port, 45
option, requires, 40
option, resource-stickiness, 40
option, target-role, 39
promotable, 90
property, class, 38
property, description, 38
property, id, 38
property, provider, 38
property, type, 38
resource set, 62
rule expression, 111
standard, 36
start order, 58

resource defaults
rule, 114

resource-discovery
rsc_location attribute, 56

resource-discovery-enabled
node attribute, 33

resource-stickiness
clone, 94
group, 89
resource option, 40

resource_set
attribute, action, 63
attribute, id, 63
attribute, kind, 63
attribute, require-all, 63
attribute, role, 63
attribute, score, 63
attribute, sequential, 63
XML element, 62

role
action property, 46
id (attribute), 120
op, 46
resource_set attribute, 63
rsc_location attribute, 56
rule, 112
XML element, 120

rsc
rsc_colocation attribute, 60
rsc_location attribute, 55

rsc-pattern
rsc_location attribute, 55

rsc-role
clone ordering constraint, 60

rsc_colocation
attribute, id, 60
attribute, influence, 61
attribute, node-attribute, 60
attribute, rsc, 60
attribute, score, 60
attribute, with-rsc, 60
XML element, 60

rsc_expression
class, 111
id, 111
provider, 111
type, 111
XML element, 111

rsc_location
attribute, id, 55
attribute, node, 55
attribute, resource-discovery, 56
attribute, role, 56
attribute, rsc, 55
attribute, rsc-pattern, 55
attribute, score, 55
XML element, 55

rsc_order
attribute, first, 58
attribute, first-action, 58
attribute, id, 58
attribute, kind, 59
attribute, symmetrical, 59
attribute, then, 58
attribute, then-action, 58
constraint, 58
XML element, 58

rule, 104
boolean-op, 105
cluster option, 114, 117
conditions, 105
contexts, 105
date/time expression, 105
id, 104
instance attribute, 114
location constraint, 112
meta-attribute, 114
node attribute, 114
node attribute expression, 109
operation defaults, 114
operation expression, 111

Index 159



Pacemaker Explained, Release 3.0.0

options, 104
resource defaults, 114
resource expression, 111
role, 112
score, 112
score-attribute, 112
XML element, 104

run-command
docker attribute, 96
podman attribute, 96

S
SBD_SYNC_RESOURCE_STARTUP

node option, 18
SBD_WATCHDOG_TIMEOUT

node option, 18
score

cluster_property_set, 20
instance_attributes, 20
meta_attributes, 20
node health attribute value, 34
resource_set attribute, 63
rsc_colocation attribute, 60
rsc_location attribute, 55
rule, 112
type, 11
utilization, 20

score-attribute
rule, 112

seconds
date_spec, 106
duration, 107

select
XML element, 126

select_attributes
XML element, 126

select_fencing
XML element, 126

select_nodes
XML element, 126

select_resources
XML element, 126

sequential
resource_set attribute, 63

server
remote node, 44

shutdown
node attribute, 33

shutdown-escalation
cluster option, 29

shutdown-lock
cluster option, 28

shutdown-lock-limit
cluster option, 28

site-name
node attribute, 33

source-dir
storage-mapping attribute, 98

source-dir-root
storage-mapping attribute, 98

standby
node attribute, 33

start
date_expression, 105

start-delay
action property, 48
op, 48

start-failure-is-fatal
cluster option, 24

startup-fencing
cluster option, 29

status
XML element, 134

STONITH, 70
resources, 38

stonith-action
cluster option, 24

stonith-enabled
cluster option, 24

stonith-max-attempts
cluster option, 24

stonith-timeout
cluster option, 24

stonith-timeout (primitive instance attribute), 72
stonith-watchdog-timeout

cluster option, 25
stop-all-resources

cluster option, 23
stop-orphan-actions

cluster option, 24
stop-orphan-resources

cluster option, 23
storage-mapping

attribute, id, 98
attribute, options, 98
attribute, source-dir, 98
attribute, source-dir-root, 98
attribute, target-dir, 98

symmetric-cluster
cluster option, 23

symmetrical
rsc_order attribute, 59

Symmetrical Clusters, 57
System Service

resources, 37
Systemd

resources, 37

160 Index



Pacemaker Explained, Release 3.0.0

T
target

fencing-level, 84
target-attribute

fencing-level, 84
target-dir

storage-mapping attribute, 98
target-pattern

fencing-level, 84
target-role

resource option, 39
target-value

fencing-level, 84
terminate

node attribute, 33
text

type, 11
then

rsc_order attribute, 58
timeout

action property, 46
alert meta-attribute, 125
op, 46
type, 11

timestamp-format
alert meta-attribute, 125

transient_attributes
XML element, 135

transition-delay
cluster option, 29

transition-key
lrm_rsc_op, 136

transition-magic
lrm_rsc_op, 136

type
boolean, 10
date/time, 10
duration, 10
enumeration, 11
epoch_time, 11
expression, 110
id, 11
integer, 11
iso8601, 11
nonnegative integer, 11
percentage, 11
port, 11
range, 11
resource, 38
rsc_expression, 111
score, 11
text, 11
timeout, 11
version, 11

U
uname

node_state, 134
unfencing, 76
utilization

id, 20
score, 20

V
VALGRIND_OPTS

node option, 19
validate-with

cib, 21
value

expression, 110
value-source

expression, 110
version

type, 11

W
weekdays

date_spec, 106
weeks

date_spec, 107
duration, 107

weekyears
date_spec, 107

with-rsc
rsc_colocation attribute, 60

with-rsc-role
clone ordering constraint, 60

X
XML element

acl_group, 120
acl_permission, 119
acl_role, 118
acl_target, 119
acls, 118
alert, 123
alerts, 123
attribute, 126
bundle, 96
cib, 19
clone, 90
configuration, 10, 19
date_expression, 105
date_spec, 106
docker, 96
duration, 107
expression, 109
group, 88

Index 161



Pacemaker Explained, Release 3.0.0

lrm, 135
lrm_resource, 135
lrm_resources, 135
lrm_rsc_op, 136
network, 97
node_state, 134
op_expression, 111
podman, 96
port-mapping, 97
recipient, 124
resource_set, 62
role, 120
rsc_colocation, 60
rsc_expression, 111
rsc_location, 55
rsc_order, 58
rule, 104
select, 126
select_attributes, 126
select_fencing, 126
select_nodes, 126
select_resources, 126
status, 134
transient_attributes, 135

xpath
acl_permission attribute, 119

Y
yeardays

date_spec, 106
years

date_spec, 107
duration, 107

yellow
node health attribute value, 34

162 Index


	Abstract
	Table of Contents
	Introduction
	The Scope of this Document
	What Is Pacemaker?

	Host-Local Configuration
	Configuration Value Types
	Local Options

	Cluster-Wide Configuration
	Configuration Layout
	Option Precedence
	CIB Properties
	Cluster Options

	Nodes
	Cluster nodes
	Pacemaker Remote nodes
	Defining a Node
	Quorum-only Nodes
	Node Attributes
	Tracking Node Health

	Resources
	Resource Standards
	Resource Properties
	Resource Options
	Pacemaker Remote Resources

	Resource Operations
	Operation Properties
	Monitoring Resources for Failure
	Custom Recurring Operations
	Setting Global Defaults for Operations
	When Implicit Operations Take a Long Time
	Multiple Monitor Operations
	Disabling a Monitor Operation
	Handling Resource Failure
	Reloading an Agent After a Definition Change
	Migrating Resources

	Resource Constraints
	Deciding Which Nodes a Resource Can Run On
	Specifying the Order in which Resources Should Start/Stop
	Placing Resources Relative to other Resources
	Resource Sets
	Ordering Sets of Resources
	Colocating Sets of Resources
	External Resource Dependencies

	Fencing
	What Is Fencing?
	Why Is Fencing Necessary?
	Fence Devices
	Fence Agents
	When a Fence Device Can Be Used
	Limitations of Fencing Resources
	Special Meta-Attributes for Fencing Resources
	Special Instance Attributes for Fencing Resources
	Default Check Type
	Unfencing
	Fencing and Quorum
	Fencing Timeouts
	Fence Devices Dependent on Other Resources
	Configuring Fencing
	Fencing Topologies
	Remapping Reboots

	Collective Resources
	Groups - A Syntactic Shortcut
	Clones - Resources That Can Have Multiple Active Instances
	Bundles - Containerized Resources

	Utilization and Placement Strategy
	Utilization attributes
	Placement Strategy
	How Multiple Capacities Combine
	Order of Resource Assignment
	Limitations

	Rules
	Rule Options
	Rule Conditions and Contexts
	Date/Time Expressions
	Node Attribute Expressions
	Resource Type Expressions
	Operation Type Expressions
	Using Rules to Determine Resource Location
	Using Rules to Define Options

	Access Control Lists (ACLs)
	ACL Prerequisites
	ACL Configuration
	ACL Roles
	ACL Targets and Groups
	ACLs and Pacemaker Remote Nodes
	ACL Examples
	ACL Limitations

	Alerts
	Alert Agents
	Alert Recipients
	Alert Meta-Attributes
	Alert Instance Attributes
	Alert Filters

	Reusing Parts of the Configuration
	Reusing Resource Definitions
	Reusing Rules, Options and Sets of Operations
	Tagging Configuration Elements

	Status
	Node State
	Transient Node Attributes
	Node History

	Multi-Site Clusters and Tickets
	Challenges for Multi-Site Clusters
	Conceptual Overview
	Configuring Ticket Dependencies
	Managing Multi-Site Clusters
	For more information

	Sample Configurations
	Empty
	Simple
	Advanced Configuration


	Index
	Index

