

Pacemaker Explained

Configuring Pacemaker Clusters

Abstract

This document definitively explains Pacemaker’s features and capabilities,
particularly the XML syntax used in Pacemaker’s Cluster Information Base (CIB).

Table of Contents

	1. Introduction
	1.1. The Scope of this Document

	1.2. What Is Pacemaker?
	1.2.1. Cluster Architecture

	1.2.2. Pacemaker Architecture

	1.2.3. Node Redundancy Designs

	2. Host-Local Configuration
	2.1. Configuration Value Types
	2.1.1. Scores

	2.2. Local Options

	3. Cluster-Wide Configuration
	3.1. Configuration Layout

	3.2. Option Precedence

	3.3. CIB Properties

	3.4. Cluster Options

	4. Nodes
	4.1. Cluster nodes
	4.1.1. Host Clock Considerations

	4.2. Pacemaker Remote nodes

	4.3. Defining a Node
	4.3.1. Where Pacemaker Gets the Node Name

	4.4. Quorum-only Nodes

	4.5. Node Attributes
	4.5.1. Setting and querying node attributes

	4.5.2. Special node attributes

	4.6. Tracking Node Health
	4.6.1. Node Health Attributes

	4.6.2. Node Health Strategy

	4.6.3. Exempting a Resource from Health Restrictions

	4.6.4. Configuring Node Health Agents

	5. Resources
	5.1. Resource Standards
	5.1.1. Open Cluster Framework

	5.1.2. Systemd

	5.1.3. Linux Standard Base

	5.1.4. System Services

	5.1.5. STONITH

	5.2. Resource Properties

	5.3. Resource Options
	5.3.1. Resource Meta-Attributes

	5.3.2. Setting Global Defaults for Resource Meta-Attributes

	5.3.3. Resource Instance Attributes

	5.4. Pacemaker Remote Resources
	5.4.1. Remote nodes

	5.4.2. Guest Nodes

	5.4.3. Removing Pacemaker Remote Nodes

	6. Resource Operations
	6.1. Operation Properties

	6.2. Monitoring Resources for Failure

	6.3. Custom Recurring Operations

	6.4. Setting Global Defaults for Operations

	6.5. When Implicit Operations Take a Long Time

	6.6. Multiple Monitor Operations

	6.7. Disabling a Monitor Operation

	6.8. Handling Resource Failure
	6.8.1. Failure Counts

	6.8.2. Failure Response

	6.9. Reloading an Agent After a Definition Change

	6.10. Migrating Resources

	7. Resource Constraints
	7.1. Deciding Which Nodes a Resource Can Run On
	7.1.1. Location Properties

	7.1.2. Asymmetrical “Opt-In” Clusters

	7.1.3. Symmetrical “Opt-Out” Clusters

	7.1.4. What if Two Nodes Have the Same Score

	7.1.5. Specifying locations using pattern matching

	7.2. Specifying the Order in which Resources Should Start/Stop
	7.2.1. Ordering Properties

	7.2.2. Optional and mandatory ordering

	7.2.3. Symmetric and asymmetric ordering

	7.3. Placing Resources Relative to other Resources
	7.3.1. Colocation Properties

	7.3.2. Mandatory Placement

	7.3.3. Advisory Placement

	7.3.4. Colocation by Node Attribute

	7.3.5. Colocation Influence

	7.4. Resource Sets
	7.4.1. Anti-colocation Chains

	7.5. Ordering Sets of Resources
	7.5.1. Ordered Set

	7.5.2. Ordering Multiple Sets

	7.5.3. Resource Set OR Logic

	7.6. Colocating Sets of Resources

	7.7. External Resource Dependencies

	8. Fencing
	8.1. What Is Fencing?

	8.2. Why Is Fencing Necessary?

	8.3. Fence Devices

	8.4. Fence Agents

	8.5. When a Fence Device Can Be Used

	8.6. Limitations of Fencing Resources

	8.7. Special Meta-Attributes for Fencing Resources

	8.8. Special Instance Attributes for Fencing Resources

	8.9. Default Check Type

	8.10. Unfencing

	8.11. Fencing and Quorum

	8.12. Fencing Timeouts

	8.13. Fence Devices Dependent on Other Resources

	8.14. Configuring Fencing
	8.14.1. Example Fencing Configuration

	8.15. Fencing Topologies
	8.15.1. Example Dual-Layer, Dual-Device Fencing Topologies

	8.16. Remapping Reboots

	9. Collective Resources
	9.1. Groups - A Syntactic Shortcut
	9.1.1. Group Properties

	9.1.2. Group Options

	9.1.3. Group Instance Attributes

	9.1.4. Group Contents

	9.1.5. Group Constraints

	9.1.6. Group Stickiness

	9.2. Clones - Resources That Can Have Multiple Active Instances
	9.2.1. Anonymous versus Unique Clones

	9.2.2. Promotable clones

	9.2.3. Clone Properties

	9.2.4. Clone Options

	9.2.5. Clone Contents

	9.2.6. Clone Instance Attribute

	9.2.7. Clone Constraints

	9.2.8. Clone Stickiness

	9.2.9. Monitoring Promotable Clone Resources

	9.2.10. Determining Which Instance is Promoted

	9.3. Bundles - Containerized Resources
	9.3.1. Bundle Prerequisites

	9.3.2. Bundle Properties

	9.3.3. Bundle Container Properties

	9.3.4. Bundle Network Properties

	9.3.5. Bundle Storage Properties

	9.3.6. Bundle Primitive

	9.3.7. Bundle Node Attributes

	9.3.8. Bundle Meta-Attributes

	9.3.9. Limitations of Bundles

	10. Utilization and Placement Strategy
	10.1. Utilization attributes

	10.2. Placement Strategy

	10.3. How Multiple Capacities Combine

	10.4. Order of Resource Assignment

	10.5. Limitations

	11. Rules
	11.1. Rule Options

	11.2. Rule Conditions and Contexts

	11.3. Date/Time Expressions
	11.3.1. Date Specifications

	11.3.2. Durations

	11.3.3. Example Date/Time Expressions

	11.4. Node Attribute Expressions

	11.5. Resource Type Expressions
	11.5.1. Example Resource Type Expressions

	11.6. Operation Type Expressions
	11.6.1. Example Operation Type Expressions

	11.7. Using Rules to Determine Resource Location
	11.7.1. Location Rules Based on Other Node Properties

	11.7.2. Using score-attribute Instead of score

	11.7.3. Specifying location scores using pattern submatches

	11.8. Using Rules to Define Options
	11.8.1. Using Rules to Control Resource Options

	11.8.2. Using Rules to Control Resource Defaults

	11.8.3. Using Rules to Control Cluster Options

	12. Access Control Lists (ACLs)
	12.1. ACL Prerequisites

	12.2. ACL Configuration

	12.3. ACL Roles

	12.4. ACL Targets and Groups

	12.5. ACLs and Pacemaker Remote Nodes

	12.6. ACL Examples

	12.7. ACL Limitations
	12.7.1. Actions performed via IPC rather than the CIB

	12.7.2. ACLs and Pacemaker Remote

	13. Alerts
	13.1. Alert Agents

	13.2. Alert Recipients

	13.3. Alert Meta-Attributes

	13.4. Alert Instance Attributes

	13.5. Alert Filters

	14. Reusing Parts of the Configuration
	14.1. Reusing Resource Definitions
	14.1.1. Configuring Resources with Templates

	14.1.2. Using Templates in Constraints

	14.1.3. Using Templates in Resource Sets

	14.2. Reusing Rules, Options and Sets of Operations

	14.3. Tagging Configuration Elements
	14.3.1. Configuring Tags

	14.3.2. Using Tags in Constraints and Resource Sets

	14.3.3. Filtering With Tags

	15. Status
	15.1. Node State

	15.2. Transient Node Attributes

	15.3. Node History
	15.3.1. Resource History

	15.3.2. Action History

	15.3.3. Simple Operation History Example

	15.3.4. Complex Operation History Example

	16. Multi-Site Clusters and Tickets
	16.1. Challenges for Multi-Site Clusters

	16.2. Conceptual Overview
	16.2.1. Ticket

	16.2.2. Dead Man Dependency

	16.2.3. Cluster Ticket Registry

	16.2.4. Configuration Replication

	16.3. Configuring Ticket Dependencies

	16.4. Managing Multi-Site Clusters
	16.4.1. Granting and Revoking Tickets Manually

	16.4.2. Granting and Revoking Tickets via a Cluster Ticket Registry

	16.4.3. General Management of Tickets

	16.5. For more information

	17. Sample Configurations
	17.1. Empty

	17.2. Simple

	17.3. Advanced Configuration

Index

	Index

	Search Page

1. Introduction

1.1. The Scope of this Document

This document is intended to be an exhaustive reference for configuring
Pacemaker. To achieve this, it focuses on the XML syntax used to configure the
CIB.

For those that are allergic to XML, multiple higher-level front-ends
(both command-line and GUI) are available. These tools will not be covered
in this document, though the concepts explained here should make the
functionality of these tools more easily understood.

Users may be interested in other parts of the
Pacemaker documentation set [https://www.clusterlabs.org/pacemaker/doc/],
such as Clusters from Scratch, a step-by-step guide to setting up an
example cluster, and Pacemaker Administration, a guide to maintaining a
cluster.

1.2. What Is Pacemaker?

Pacemaker is a high-availability cluster resource manager – software that
runs on a set of hosts (a cluster of nodes) in order to preserve integrity
and minimize downtime of desired services (resources). 1 It is maintained
by the ClusterLabs [https://www.ClusterLabs.org/] community.

Pacemaker’s key features include:

	Detection of and recovery from node- and service-level failures

	Ability to ensure data integrity by fencing faulty nodes

	Support for one or more nodes per cluster

	Support for multiple resource interface standards (anything that can be
scripted can be clustered)

	Support (but no requirement) for shared storage

	Support for practically any redundancy configuration (active/passive, N+1,
etc.)

	Automatically replicated configuration that can be updated from any node

	Ability to specify cluster-wide relationships between services,
such as ordering, colocation, and anti-colocation

	Support for advanced service types, such as clones (services that need to
be active on multiple nodes), promotable clones (clones that can run in
one of two roles), and containerized services

	Unified, scriptable cluster management tools

Note

Fencing

Fencing, also known as STONITH (an acronym for Shoot The Other Node In
The Head), is the ability to ensure that it is not possible for a node to be
running a service. This is accomplished via fence devices such as
intelligent power switches that cut power to the target, or intelligent
network switches that cut the target’s access to the local network.

Pacemaker represents fence devices as a special class of resource.

A cluster cannot safely recover from certain failure conditions, such as an
unresponsive node, without fencing.

1.2.1. Cluster Architecture

At a high level, a cluster can be viewed as having these parts (which together
are often referred to as the cluster stack):

	Resources: These are the reason for the cluster’s being – the services
that need to be kept highly available.

	Resource agents: These are scripts or operating system components that
start, stop, and monitor resources, given a set of resource parameters.
These provide a uniform interface between Pacemaker and the managed
services.

	Fence agents: These are scripts that execute node fencing actions,
given a target and fence device parameters.

	Cluster membership layer: This component provides reliable messaging,
membership, and quorum information about the cluster. Currently, Pacemaker
supports Corosync [http://www.corosync.org/] as this layer.

	Cluster resource manager: Pacemaker provides the brain that processes
and reacts to events that occur in the cluster. These events may include
nodes joining or leaving the cluster; resource events caused by failures,
maintenance, or scheduled activities; and other administrative actions.
To achieve the desired availability, Pacemaker may start and stop resources
and fence nodes.

	Cluster tools: These provide an interface for users to interact with the
cluster. Various command-line and graphical (GUI) interfaces are available.

Most managed services are not, themselves, cluster-aware. However, many popular
open-source cluster filesystems make use of a common Distributed Lock
Manager (DLM), which makes direct use of Corosync for its messaging and
membership capabilities and Pacemaker for the ability to fence nodes.

1.2.2. Pacemaker Architecture

Pacemaker itself is composed of multiple daemons that work together:

	pacemakerd

	pacemaker-attrd

	pacemaker-based

	pacemaker-controld

	pacemaker-execd

	pacemaker-fenced

	pacemaker-schedulerd

[image: Pacemaker software components]
Pacemaker’s main process (pacemakerd) spawns all the other daemons, and
respawns them if they unexpectedly exit.

The Cluster Information Base (CIB) is an
XML [https://en.wikipedia.org/wiki/XML] representation of the cluster’s
configuration and the state of all nodes and resources. The CIB manager
(pacemaker-based) keeps the CIB synchronized across the cluster, and
handles requests to modify it.

The attribute manager (pacemaker-attrd) maintains a database of
attributes for all nodes, keeps it synchronized across the cluster, and handles
requests to modify them. These attributes are usually recorded in the CIB.

Given a snapshot of the CIB as input, the scheduler
(pacemaker-schedulerd) determines what actions are necessary to achieve the
desired state of the cluster.

The local executor (pacemaker-execd) handles requests to execute
resource agents on the local cluster node, and returns the result.

The fencer (pacemaker-fenced) handles requests to fence nodes. Given a
target node, the fencer decides which cluster node(s) should execute which
fencing device(s), and calls the necessary fencing agents (either directly, or
via requests to the fencer peers on other nodes), and returns the result.

The controller (pacemaker-controld) is Pacemaker’s coordinator,
maintaining a consistent view of the cluster membership and orchestrating all
the other components.

Pacemaker centralizes cluster decision-making by electing one of the controller
instances as the Designated Controller (DC). Should the elected DC process
(or the node it is on) fail, a new one is quickly established. The DC responds
to cluster events by taking a current snapshot of the CIB, feeding it to the
scheduler, then asking the executors (either directly on the local node, or via
requests to controller peers on other nodes) and the fencer to execute any
necessary actions.

1.2.3. Node Redundancy Designs

Pacemaker supports practically any node redundancy configuration [https://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations]
including Active/Active, Active/Passive, N+1, N+M, N-to-1, and
N-to-N.

Active/passive clusters with two (or more) nodes using Pacemaker and
DRBD [https://en.wikipedia.org/wiki/Distributed_Replicated_Block_Device] are
a cost-effective high-availability solution for many situations. One of the
nodes provides the desired services, and if it fails, the other node takes
over.

[image: Active/Passive Redundancy]
Pacemaker also supports multiple nodes in a shared-failover design, reducing
hardware costs by allowing several active/passive clusters to be combined and
share a common backup node.

[image: Shared Failover]
When shared storage is available, every node can potentially be used for
failover. Pacemaker can even run multiple copies of services to spread out the
workload. This is sometimes called N-to-N redundancy.

[image: N to N Redundancy]
Footnotes

	1

	Cluster is sometimes used in other contexts to refer to hosts grouped
together for other purposes, such as high-performance computing (HPC),
but Pacemaker is not intended for those purposes.

2. Host-Local Configuration

Note

Directory and file paths below may differ on your system depending on
your Pacemaker build settings. Check your Pacemaker configuration
file to find the correct paths.

2.1. Configuration Value Types

Throughout this document, configuration values will be designated as having one
of the following types:

Configuration Value Types

	Type

	Description

	boolean

	Case-insensitive text value where 1, yes, y, on,
and true evaluate as true and 0, no, n, off,
false, and unset evaluate as false

	date/time

	Textual timestamp like Sat Dec 21 11:47:45 2013

	duration

	A nonnegative time duration, specified either like a
timeout or an
ISO 8601 duration [https://en.wikipedia.org/wiki/ISO_8601#Durations].
A duration may be up to approximately 49 days but is intended for much
smaller time periods.

	enumeration

	Text that must be one of a set of defined values (which will be listed
in the description)

	epoch_time

	Time as the integer number of seconds since the Unix epoch,
1970-01-01 00:00:00 +0000 (UTC).

	id

	A text string starting with a letter or underbar, followed by any
combination of letters, numbers, dashes, dots, and/or underbars; when
used for a property named id, the string must be unique across all
id properties in the CIB

	integer

	32-bit signed integer value (-2,147,483,648 to 2,147,483,647)

	ISO 8601

	An ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] date/time.

	nonnegative integer

	32-bit nonnegative integer value (0 to 2,147,483,647)

	percentage

	Floating-point number followed by an optional percent sign (‘%’)

	port

	Integer TCP port number (0 to 65535)

	range

	A range may be a single nonnegative integer or a dash-separated range of
nonnegative integers. Either the first or last value may be omitted to
leave the range open-ended. Examples: 0, 3-, -5, 4-6.

	score

	A Pacemaker score can be an integer between -1,000,000 and 1,000,000, or
a string alias: INFINITY or +INFINITY is equivalent to
1,000,000, -INFINITY is equivalent to -1,000,000, and red,
yellow, and green are equivalent to integers as described in
Tracking Node Health.

	text

	A text string

	timeout

	A time duration, specified as a bare number (in which case it is
considered to be in seconds) or a number with a unit (ms or msec
for milliseconds, us or usec for microseconds, s or sec
for seconds, m or min for minutes, h or hr for hours)
optionally with whitespace before and/or after the number.

	version

	Version number (any combination of alphanumeric characters, dots, and
dashes, starting with a number).

2.1.1. Scores

Scores are integral to how Pacemaker works. Practically everything from moving
a resource to deciding which resource to stop in a degraded cluster is achieved
by manipulating scores in some way.

Scores are calculated per resource and node. Any node with a negative score for
a resource can’t run that resource. The cluster places a resource on the node
with the highest score for it.

Score addition and subtraction follow these rules:

	Any value (including INFINITY) - INFINITY = -INFINITY

	INFINITY + any value other than -INFINITY = INFINITY

Note

What if you want to use a score higher than 1,000,000? Typically this possibility
arises when someone wants to base the score on some external metric that might
go above 1,000,000.

The short answer is you can’t.

The long answer is it is sometimes possible work around this limitation
creatively. You may be able to set the score to some computed value based on
the external metric rather than use the metric directly. For nodes, you can
store the metric as a node attribute, and query the attribute when computing
the score (possibly as part of a custom resource agent).

2.2. Local Options

Most Pacemaker configuration is in the cluster-wide CIB, but some host-local
configuration options either are needed at startup (before the CIB is read) or
provide per-host overrides of cluster-wide options.

These options are configured as environment variables set when Pacemaker is
started, in the format <NAME>="<VALUE>". These are typically set in a file
whose location varies by OS (most commonly /etc/sysconfig/pacemaker or
/etc/default/pacemaker; this documentation was generated on a system using
/etc/sysconfig/pacemaker).

Local Options

	Name

	Type

	Default

	Description

	CIB_pam_service

	text

	login

	PAM service to use for remote CIB client authentication (passed to
pam_start).

	PCMK_logfacility

	enumeration

	daemon

	Enable logging via the system log or journal, using the specified log
facility. Messages sent here are of value to all Pacemaker
administrators. This can be disabled using none, but that is not
recommended. Allowed values:

	none

	daemon

	user

	local0

	local1

	local2

	local3

	local4

	local5

	local6

	local7

	PCMK_logpriority

	enumeration

	notice

	Unless system logging is disabled using PCMK_logfacility=none,
messages of the specified log severity and higher will be sent to the
system log. The default is appropriate for most installations. Allowed
values:

	emerg

	alert

	crit

	error

	warning

	notice

	info

	debug

	PCMK_logfile

	text

	/var/log/pacemaker/pacemaker.log

	Unless set to none, more detailed log messages will be sent to the
specified file (in addition to the system log, if enabled). These
messages may have extended information, and will include messages of info
severity. This log is of more use to developers and advanced system
administrators, and when reporting problems. Note: The default is
/var/log/pcmk-init.log (inside the container) for bundled container
nodes; this would typically be mapped to a different path on the host
running the container.

	PCMK_logfile_mode

	text

	0660

	Pacemaker will set the permissions on the detail log to this value (see
chmod(1)).

	PCMK_debug

	enumeration

	no

	Whether to send debug severity messages to the detail log. This may be
set for all subsystems (yes or no) or for specific (comma-
separated) subsystems. Allowed subsystems are:

	pacemakerd

	pacemaker-attrd

	pacemaker-based

	pacemaker-controld

	pacemaker-execd

	pacemaker-fenced

	pacemaker-schedulerd

Example: PCMK_debug="pacemakerd,pacemaker-execd"

	PCMK_stderr

	boolean

	no

	Advanced Use Only: Whether to send daemon log messages to stderr. This
would be useful only during troubleshooting, when starting Pacemaker
manually on the command line.

Setting this option in the configuration file is pointless, since the
file is not read when starting Pacemaker manually. However, it can be set
directly as an environment variable on the command line.

	PCMK_trace_functions

	text

	
	Advanced Use Only: Send debug and trace severity messages from these
(comma-separated) source code functions to the detail log.

Example:
PCMK_trace_functions="func1,func2"

	PCMK_trace_files

	text

	
	Advanced Use Only: Send debug and trace severity messages from all
functions in these (comma-separated) source file names to the detail log.

Example: PCMK_trace_files="file1.c,file2.c"

	PCMK_trace_formats

	text

	
	Advanced Use Only: Send trace severity messages that are generated by
these (comma-separated) format strings in the source code to the detail
log.

Example: PCMK_trace_formats="Error: %s (%d)"

	PCMK_trace_tags

	text

	
	Advanced Use Only: Send debug and trace severity messages related to
these (comma-separated) resource IDs to the detail log.

Example: PCMK_trace_tags="client-ip,dbfs"

	PCMK_blackbox

	enumeration

	no

	Advanced Use Only: Enable blackbox logging globally (yes or no)
or by subsystem. A blackbox contains a rolling buffer of all logs (of all
severities). Blackboxes are stored under /var/lib/pacemaker/blackbox by default,
by default, and their contents can be viewed using the qb-blackbox(8)
command.

The blackbox recorder can be enabled at start using this variable, or at
runtime by sending a Pacemaker subsystem daemon process a SIGUSR1 or
SIGTRAP signal, and disabled by sending SIGUSR2 (see
kill(1)). The blackbox will be written after a crash, assertion
failure, or SIGTRAP signal.

See PCMK_debug for allowed subsystems.

Example:
PCMK_blackbox="pacemakerd,pacemaker-execd"

	PCMK_trace_blackbox

	enumeration

	
	Advanced Use Only: Write a blackbox whenever the message at the
specified function and line is logged. Multiple entries may be comma-
separated.

Example: PCMK_trace_blackbox="remote.c:144,remote.c:149"

	PCMK_node_start_state

	enumeration

	default

	By default, the local host will join the cluster in an online or standby
state when Pacemaker first starts depending on whether it was previously
put into standby mode. If this variable is set to standby or
online, it will force the local host to join in the specified state.

	PCMK_node_action_limit

	nonnegative integer

	
	If set, this overrides the node-action-limit
cluster option on this node to specify the maximum number of jobs that
can be scheduled on this node (or 0 to use twice the number of CPU
cores).

	PCMK_fail_fast

	boolean

	no

	By default, if a Pacemaker subsystem crashes, the main pacemakerd
process will attempt to restart it. If this variable is set to yes,
pacemakerd will panic the local host instead.

	PCMK_panic_action

	enumeration

	reboot

	Pacemaker will panic the local host under certain conditions. By default,
this means rebooting the host. This variable can change that behavior: if
crash, trigger a kernel crash (useful if you want a kernel dump to
investigate); if sync-reboot or sync-crash, synchronize
filesystems before rebooting the host or triggering a kernel crash. The
sync values are more likely to preserve log messages, but with the risk
that the host may be left active if the synchronization hangs.

	PCMK_remote_address

	text

	
	By default, if the Pacemaker Remote service is
run on the local node, it will listen for connections on all IP
addresses. This may be set to one address to listen on instead, as a
resolvable hostname or as a numeric IPv4 or IPv6 address. When resolving
names or listening on all addresses, IPv6 will be preferred if
available. When listening on an IPv6 address, IPv4 clients will be
supported via IPv4-mapped IPv6 addresses.

Example: PCMK_remote_address="192.0.2.1"

	PCMK_remote_port

	port

	3121

	Use this TCP port number for Pacemaker Remote
node connections. This value must be the same on all nodes.

	PCMK_ca_file

	text

	
	The location of a file containing trusted Certificate Authorities, used to
verify client or server certificates. This file must be in PEM format and
must be readable by Pacemaker daemons (that is, it must allow read permissions
to either the hacluster user or the haclient group).
If set, along with PCMK_key_file and
PCMK_cert_file, X509 authentication will be enabled
for Pacemaker Remote and remote CIB connections.

Example: PCMK_ca_file="/etc/pacemaker/ca.cert.pem"

	PCMK_cert_file

	text

	
	The location of a file containing the signed certificate for the server
side of the connection. This file must be in PEM format and must be
readable by Pacemaker daemons (that is, it must allow read permissions
to either the hacluster user or the haclient group).
If set, along with PCMK_ca_file and
PCMK_key_file, X509 authentication will be enabled
for Pacemaker Remote and remote CIB connections.

Example: PCMK_cert_file="/etc/pacemaker/server.cert.pem"

	PCMK_crl_file

	text

	
	The location of a Certificate Revocation List file, in PEM format. This
setting is optional for X509 authentication.

Example: PCMK_cr1_file="/etc/pacemaker/crl.pem"

	PCMK_key_file

	text

	
	The location of a file containing the private key for the matching
PCMK_cert_file, in PEM format. This file must
be readble by Pacemaker daemons (that is, it must allow read permissions
to either the hacluster user or the haclient group).
If set, along with PCMK_ca_file and
PCMK_cert_file, X509 authentication will be
enabled for Pacemaker Remote and remote CIB
connections.

Example: PCMK_key_file="/etc/pacemaker/server.key.pem"

	PCMK_authkey_location

	text

	/etc/pacemaker/authkey

	As an alternative to using X509 authentication for Pacemaker Remote connections, use the contents of this file as the
authorization key. This file must be readable by Pacemaker daemons (that
is, it must allow read permissions to either the hacluster user
or the haclient group), and its contents must be identical on
all nodes.

This is an alternative to using X509 certificates.

	PCMK_remote_pid1

	enumeration

	default

	Advanced Use Only: When a bundle resource’s run-command option is
left to default, Pacemaker Remote runs as PID
1 in the bundle’s containers. When it does so, it loads environment
variables from the container’s /etc/pacemaker/pcmk-init.env and performs the PID
1 responsibility of reaping dead subprocesses.

This option controls whether those actions are performed when Pacemaker
Remote is not running as PID 1. It is intended primarily for developer
testing but can be useful when run-command is set to a separate,
custom PID 1 process that launches Pacemaker Remote.

	full: Pacemaker Remote loads environment variables from
/etc/pacemaker/pcmk-init.env and reaps dead subprocesses.

	vars: Pacemaker Remote loads environment variables from
/etc/pacemaker/pcmk-init.env but does not reap dead subprocesses.

	default: Pacemaker Remote performs neither action.

If Pacemaker Remote is running as PID 1, this option is ignored, and the
behavior is the same as for full.

	PCMK_tls_priorities

	text

	NORMAL

	Advanced Use Only: These GnuTLS cipher priorities [https://gnutls.org/manual/html_node/Priority-Strings.html] will be
used for TLS connections (whether for Pacemaker Remote connections or remote CIB access, when enabled).

Pacemaker will append ":+ANON-DH" for remote CIB access and
":+DHE-PSK:+PSK" for Pacemaker Remote connections, as they are
required for the respective functionality.

Example:
PCMK_tls_priorities="SECURE128:+SECURE192"

	PCMK_dh_max_bits

	nonnegative integer

	0 (no maximum)

	Advanced Use Only: Set an upper bound on the bit length of the prime
number generated for Diffie-Hellman parameters needed by TLS connections.
The default is no maximum.

The server (Pacemaker Remote daemon, or CIB
manager configured to accept remote clients) will use this value to
provide a ceiling for the value recommended by the GnuTLS library. The
library will only accept a limited number of specific values, which vary
by library version, so setting these is recommended only when required
for compatibility with specific client versions.

Clients do not use PCMK_dh_max_bits.

	PCMK_ipc_type

	enumeration

	shared-mem

	Advanced Use Only: Force use of a particular IPC method. Allowed values:

	shared-mem

	socket

	posix

	sysv

	PCMK_ipc_buffer

	nonnegative integer

	131072

	Advanced Use Only: Specify an IPC buffer size in bytes. This can be
useful when connecting to large clusters that result in messages
exceeding the default size (which will also result in log messages
referencing this variable).

	PCMK_cluster_type

	enumeration

	corosync

	Advanced Use Only: Specify the cluster layer to be used. If unset,
Pacemaker will detect and use a supported cluster layer, if available.
Currently, "corosync" is the only supported cluster layer. If
multiple layers are supported in the future, this will allow overriding
Pacemaker’s automatic detection to select a specific one.

	PCMK_schema_directory

	text

	/usr/share/pacemaker

	Advanced Use Only: Specify an alternate location for RNG schemas and
XSL transforms.

	PCMK_remote_schema_directory

	text

	/var/lib/pacemaker/schemas

	Advanced Use Only: Specify an alternate location on
Pacemaker Remote nodes for storing newer RNG
schemas and XSL transforms fetched from the cluster.

	PCMK_valgrind_enabled

	enumeration

	no

	Advanced Use Only: Whether subsystem daemons should be run under
valgrind. Allowed values are the same as for PCMK_debug.

	PCMK_callgrind_enabled

	enumeration

	no

	Advanced Use Only: Whether subsystem daemons should be run under
valgrind with the callgrind tool enabled. Allowed values are the
same as for PCMK_debug.

	SBD_SYNC_RESOURCE_STARTUP

	boolean

	
	If true, pacemakerd waits for a ping from sbd during startup
before starting other Pacemaker daemons, and during shutdown after
stopping other Pacemaker daemons but before exiting. Default value is set
based on the --with-sbd-sync-default configure script option.

	SBD_WATCHDOG_TIMEOUT

	duration

	
	If the stonith-watchdog-timeout cluster property is set to a negative
or invalid value, use double this value as the default if positive, or
use 0 as the default otherwise. This value must be greater than the value
of stonith-watchdog-timeout if both are set.

	VALGRIND_OPTS

	text

	
	Advanced Use Only: Pass these options to valgrind, when enabled (see
valgrind(1)). "--vgdb=no" should usually be specified because
pacemaker-execd can lower privileges when executing commands, which
would otherwise leave a bunch of unremovable files in /tmp.

3. Cluster-Wide Configuration

3.1. Configuration Layout

The cluster is defined by the Cluster Information Base (CIB), which uses XML
notation. The simplest CIB, an empty one, looks like this:

An empty configuration

<cib crm_feature_set="3.6.0" validate-with="pacemaker-3.5" epoch="1" num_updates="0" admin_epoch="0">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
</cib>

The empty configuration above contains the major sections that make up a CIB:

	cib: The entire CIB is enclosed with a cib element. Certain
fundamental settings are defined as attributes of this element.

	configuration: This section – the primary focus of this document –
contains traditional configuration information such as what resources the
cluster serves and the relationships among them.

	crm_config: cluster-wide configuration options

	nodes: the machines that host the cluster

	resources: the services run by the cluster

	constraints: indications of how resources should be placed

	status: This section contains the history of each resource on each
node. Based on this data, the cluster can construct the complete current
state of the cluster. The authoritative source for this section is the
local executor (pacemaker-execd process) on each cluster node, and the
cluster will occasionally repopulate the entire section. For this reason,
it is never written to disk, and administrators are advised against
modifying it in any way.

In this document, configuration settings will be described as properties or
options based on how they are defined in the CIB:

	Properties are XML attributes of an XML element.

	Options are name-value pairs expressed as nvpair child elements of an XML
element.

Normally, you will use command-line tools that abstract the XML, so the
distinction will be unimportant; both properties and options are cluster
settings you can tweak.

Options can appear within four types of enclosing elements:

	cluster_property_set

	instance_attributes

	meta_attributes

	utilization

We will refer to a set of options and its enclosing element as a block.

Properties of an Option Block’s Enclosing Element

	Name

	Type

	Default

	Description

	id

	id

	
	A unique name for the block (required)

	score

	score

	0

	Priority with which to process the block

Each block may optionally contain a rule.

3.2. Option Precedence

This subsection describes the precedence of options within a set of blocks and
within a single block.

Options are processed as follows:

	All option blocks of a given type are processed in order of their score
attribute, from highest to lowest. For cluster_property_set, if there is a
block whose enclosing element has id="cib-bootstrap-options", then that
block is always processed first regardless of score.

	If a block contains a rule that evaluates to false, that block is skipped.

	Within a block, options are processed in order from first to last.

	The first value found for a given option is applied, and the rest are ignored.

Note that this means it is pointless to configure the same option twice in a
single block, because occurrences after the first one would be ignored.

For example, in the following configuration snippet, the no-quorum-policy
value demote is applied. property-set2 has a higher score than
property-set1, so it’s processed first. There are no rules in this snippet,
so both sets are processed. Within property-set2, the value demote
appears first, so the later value freeze is ignored. We’ve already found a
value for no-quorum-policy before we begin processing property-set1, so
its value stop is ignored.

<cluster_property_set id="property-set1" score="500">
 <nvpair id="no-quorum-policy1" name="no-quorum-policy" value="stop"/>
</cluster_property_set>
<cluster_property_set id="property-set2" score="1000">
 <nvpair id="no-quorum-policy2a" name="no-quorum-policy" value="demote"/>
 <nvpair id="no-quorum-policy2b" name="no-quorum-policy" value="freeze"/>
</cluster_property_set>

3.3. CIB Properties

Certain settings are defined by CIB properties (that is, attributes of the
cib tag) rather than with the rest of the cluster configuration in the
configuration section.

The reason is simply a matter of parsing. These options are used by the
configuration database which is, by design, mostly ignorant of the content it
holds. So the decision was made to place them in an easy-to-find location.

CIB Properties

	Name

	Type

	Default

	Description

	admin_epoch

	nonnegative integer

	0

	When a node joins the cluster, the cluster asks the node with the
highest (admin_epoch, epoch, num_updates) tuple to replace
the configuration on all the nodes – which makes setting them correctly
very important. admin_epoch is never modified by the cluster; you
can use this to make the configurations on any inactive nodes obsolete.

	epoch

	nonnegative integer

	0

	The cluster increments this every time the CIB’s configuration section
is updated.

	num_updates

	nonnegative integer

	0

	The cluster increments this every time the CIB’s configuration or status
sections are updated, and resets it to 0 when epoch changes.

	validate-with

	enumeration

	
	Determines the type of XML validation that will be done on the
configuration. Allowed values are none (in which case the cluster
will not require that updates conform to expected syntax) and the base
names of schema files installed on the local machine (for example,
“pacemaker-3.9”)

	remote-tls-port

	port

	
	If set, the CIB manager will listen for anonymously encrypted remote
connections on this port, to allow CIB administration from hosts not in
the cluster. No key is used, so this should be used only on a protected
network where man-in-the-middle attacks can be avoided.

	remote-clear-port

	port

	
	If set to a TCP port number, the CIB manager will listen for remote
connections on this port, to allow for CIB administration from hosts not
in the cluster. No encryption is used, so this should be used only on a
protected network.

	cib-last-written

	date/time

	
	Indicates when the configuration was last written to disk. Maintained by
the cluster; for informational purposes only.

	have-quorum

	boolean

	
	Indicates whether the cluster has quorum. If false, the cluster’s
response is determined by no-quorum-policy (see below). Maintained
by the cluster.

	dc-uuid

	text

	
	Node ID of the cluster’s current designated controller (DC). Used and
maintained by the cluster.

	execution-date

	epoch time

	
	Time to use when evaluating rules.

3.4. Cluster Options

Cluster options, as you might expect, control how the cluster behaves when
confronted with various situations.

They are grouped into sets within the crm_config section. In advanced
configurations, there may be more than one set. (This will be described later
in the chapter on Rules where we will show how to have the cluster use
different sets of options during working hours than during weekends.) For now,
we will describe the simple case where each option is present at most once.

You can obtain an up-to-date list of cluster options, including their default
values, by running the man pacemaker-schedulerd and
man pacemaker-controld commands.

Cluster Options

	Name

	Type

	Default

	Description

	cluster-name

	text

	
	An (optional) name for the cluster as a whole. This is mostly for users’
convenience for use as desired in administration, but can be used in the
Pacemaker configuration in Rules (as the #cluster-name
node attribute). It may also
be used by higher-level tools when displaying cluster information, and
by certain resource agents (for example, the ocf:heartbeat:GFS2
agent stores the cluster name in filesystem meta-data).

	dc-version

	version

	detected

	Version of Pacemaker on the cluster’s designated controller (DC).
Maintained by the cluster, and intended for diagnostic purposes.

	cluster-infrastructure

	text

	detected

	The messaging layer with which Pacemaker is currently running.
Maintained by the cluster, and intended for informational and diagnostic
purposes.

	no-quorum-policy

	enumeration

	stop

	What to do when the cluster does not have quorum. Allowed values:

	ignore: continue all resource management

	freeze: continue resource management, but don’t recover resources
from nodes not in the affected partition

	stop: stop all resources in the affected cluster partition

	demote: demote promotable resources and stop all other resources
in the affected cluster partition (since 2.0.5)

	fence: fence all nodes in the affected cluster partition
(since 2.1.9)

	suicide: same as fence (deprecated since 2.1.9)

	batch-limit

	integer

	0

	The maximum number of actions that the cluster may execute in parallel
across all nodes. The ideal value will depend on the speed and load
of your network and cluster nodes. If zero, the cluster will impose a
dynamically calculated limit only when any node has high load. If -1,
the cluster will not impose any limit.

	migration-limit

	integer

	-1

	The number of live migration actions that the
cluster is allowed to execute in parallel on a node. A value of -1 means
unlimited.

	load-threshold

	percentage

	80%

	Maximum amount of system load that should be used by cluster nodes. The
cluster will slow down its recovery process when the amount of system
resources used (currently CPU) approaches this limit.

	node-action-limit

	integer

	0

	Maximum number of jobs that can be scheduled per node. If nonpositive or
invalid, double the number of cores is used as the maximum number of jobs
per node. PCMK_node_action_limit
overrides this option on a per-node basis.

	symmetric-cluster

	boolean

	true

	If true, resources can run on any node by default. If false, a resource
is allowed to run on a node only if a
location constraint enables it.

	stop-all-resources

	boolean

	false

	Whether all resources should be disallowed from running (can be useful
during maintenance or troubleshooting)

	stop-orphan-resources

	boolean

	true

	Whether resources that have been deleted from the configuration should
be stopped. This value takes precedence over
is-managed (that is, even unmanaged resources will
be stopped when orphaned if this value is true).

	stop-orphan-actions

	boolean

	true

	Whether recurring operations that have been deleted
from the configuration should be cancelled

	start-failure-is-fatal

	boolean

	true

	Whether a failure to start a resource on a particular node prevents
further start attempts on that node. If false, the cluster will
decide whether the node is still eligible based on the resource’s
current failure count and migration-threshold.

	enable-startup-probes

	boolean

	true

	Whether the cluster should check the pre-existing state of resources
when the cluster starts

	maintenance-mode

	boolean

	false

	If true, the cluster will not start or stop any resource in the cluster,
and any recurring operations (expect those specifying role as
Stopped) will be paused. If true, this overrides the
maintenance node attribute,
is-managed and maintenance
resource meta-attributes, and enabled operation
meta-attribute.

	stonith-enabled

	boolean

	true

	Whether the cluster is allowed to fence nodes (for example, failed nodes
and nodes with resources that can’t be stopped).

If true, at least one fence device must be configured before resources
are allowed to run.

If false, unresponsive nodes are immediately assumed to be running no
resources, and resource recovery on online nodes starts without any
further protection (which can mean data loss if the unresponsive node
still accesses shared storage, for example). See also the
requires resource meta-attribute.

This option applies only to fencing scheduled by the cluster, not to
requests initiated externally (such as with the stonith_admin
command-line tool).

	stonith-action

	enumeration

	reboot

	Action the cluster should send to the fence agent when a node must be
fenced. Allowed values are reboot and off.

	stonith-timeout

	duration

	60s

	How long to wait for on, off, and reboot fence actions to
complete by default.

	stonith-max-attempts

	score

	10

	How many times fencing can fail for a target before the cluster will no
longer immediately re-attempt it. Any value below 1 will be ignored, and
the default will be used instead.

	have-watchdog

	boolean

	detected

	Whether watchdog integration is enabled. This is set automatically by the
cluster according to whether SBD is detected to be in use.
User-configured values are ignored. The value true is meaningful if
diskless SBD is used and
stonith-watchdog-timeout is nonzero. In
that case, if fencing is required, watchdog-based self-fencing will be
performed via SBD without requiring a fencing resource explicitly
configured.

	stonith-watchdog-timeout

	timeout

	0

	If nonzero, and the cluster detects have-watchdog as true, then
watchdog-based self-fencing will be performed via SBD when fencing is
required.

If this is set to a positive value, lost nodes are assumed to achieve
self-fencing within this much time.

This does not require a fencing resource to be explicitly configured,
though a fence_watchdog resource can be configured, to limit use to
specific nodes.

If this is set to 0 (the default), the cluster will never assume
watchdog-based self-fencing.

If this is set to a negative value, the cluster will use twice the local
value of the SBD_WATCHDOG_TIMEOUT environment variable if that is
positive, or otherwise treat this as 0.

Warning: When used, this timeout must be larger than
SBD_WATCHDOG_TIMEOUT on all nodes that use watchdog-based SBD, and
Pacemaker will refuse to start on any of those nodes where this is not
true for the local value or SBD is not active. When this is set to a
negative value, SBD_WATCHDOG_TIMEOUT must be set to the same value
on all nodes that use SBD, otherwise data corruption or loss could occur.

	concurrent-fencing

	boolean

	false

	Whether the cluster is allowed to initiate multiple fence actions
concurrently. Fence actions initiated externally, such as via the
stonith_admin tool or an application such as DLM, or by the fencer
itself such as recurring device monitors and status and list
commands, are not limited by this option.

	fence-reaction

	enumeration

	stop

	How should a cluster node react if notified of its own fencing? A
cluster node may receive notification of a “succeeded” fencing that
targeted it if fencing is misconfigured, or if fabric fencing is in use
that doesn’t cut cluster communication. Allowed values are stop to
attempt to immediately stop Pacemaker and stay stopped, or panic to
attempt to immediately reboot the local node, falling back to stop on
failure. The default is likely to be changed to panic in a future
release. (since 2.0.3)

	priority-fencing-delay

	duration

	0

	Apply this delay to any fencing targeting the lost nodes with the
highest total resource priority in case we don’t have the majority of
the nodes in our cluster partition, so that the more significant nodes
potentially win any fencing match (especially meaningful in a
split-brain of a 2-node cluster). A promoted resource instance takes the
resource’s priority plus 1 if the resource’s priority is not 0. Any
static or random delays introduced by pcmk_delay_base and
pcmk_delay_max configured for the corresponding fencing resources
will be added to this delay. This delay should be significantly greater
than (safely twice) the maximum delay from those parameters. (since
2.0.4)

	node-pending-timeout

	duration

	0

	Fence nodes that do not join the controller process group within this
much time after joining the cluster, to allow the cluster to continue
managing resources. A value of 0 means never fence pending nodes. Setting the value to 2h means fence nodes after 2 hours.
(since 2.1.7)

	cluster-delay

	duration

	60s

	If the DC requires an action to be executed on another node, it will
consider the action failed if it does not get a response from the other
node within this time (beyond the action’s own timeout). The ideal value
will depend on the speed and load of your network and cluster nodes.

	dc-deadtime

	duration

	20s

	How long to wait for a response from other nodes when electing a DC. The
ideal value will depend on the speed and load of your network and
cluster nodes.

	cluster-ipc-limit

	nonnegative integer

	500

	The maximum IPC message backlog before one cluster daemon will
disconnect another. This is of use in large clusters, for which a good
value is the number of resources in the cluster multiplied by the number
of nodes. The default of 500 is also the minimum. Raise this if you see
“Evicting client” log messages for cluster daemon process IDs.

	pe-error-series-max

	integer

	-1

	The number of scheduler inputs resulting in errors to save. These inputs
can be helpful during troubleshooting and when reporting issues. A
negative value means save all inputs, and 0 means save none.

	pe-warn-series-max

	integer

	5000

	The number of scheduler inputs resulting in warnings to save. These
inputs can be helpful during troubleshooting and when reporting issues.
A negative value means save all inputs, and 0 means save none.

	pe-input-series-max

	integer

	4000

	The number of “normal” scheduler inputs to save. These inputs can be
helpful during troubleshooting and when reporting issues. A negative
value means save all inputs, and 0 means save none.

	enable-acl

	boolean

	false

	Whether access control lists should be used to authorize
CIB modifications

	placement-strategy

	enumeration

	default

	How the cluster should assign resources to nodes (see
Utilization and Placement Strategy). Allowed values are default, utilization,
balanced, and minimal.

	node-health-strategy

	enumeration

	none

	How the cluster should react to node health
attributes. Allowed values are none, migrate-on-red,
only-green, progressive, and custom.

	node-health-base

	score

	0

	The base health score assigned to a node. Only used when
node-health-strategy is progressive.

	node-health-green

	score

	0

	The score to use for a node health attribute whose value is green.
Only used when node-health-strategy is progressive or
custom.

	node-health-yellow

	score

	0

	The score to use for a node health attribute whose value is yellow.
Only used when node-health-strategy is progressive or
custom.

	node-health-red

	score

	-INFINITY

	The score to use for a node health attribute whose value is red.
Only used when node-health-strategy is progressive or
custom.

	cluster-recheck-interval

	duration

	15min

	Pacemaker is primarily event-driven, and looks ahead to know when to
recheck the cluster for failure-timeout settings and most time-based
rules (since 2.0.3). However, it will also recheck the cluster after
this amount of inactivity. This has three main effects:

	Rules using date_spec are guaranteed to be checked
only this often.

	If fencing fails enough to reach
stonith-max-attempts, attempts will
begin again after at most this time.

	It serves as a fail-safe in case of certain scheduler bugs. If the
scheduler incorrectly determines only some of the actions needed to
react to a particular event, it will often correctly determine the
rest after at most this time.

A value of 0 disables this polling.

	shutdown-lock

	boolean

	false

	The default of false allows active resources to be recovered elsewhere
when their node is cleanly shut down, which is what the vast majority of
users will want. However, some users prefer to make resources highly
available only for failures, with no recovery for clean shutdowns. If
this option is true, resources active on a node when it is cleanly shut
down are kept “locked” to that node (not allowed to run elsewhere) until
they start again on that node after it rejoins (or for at most
shutdown-lock-limit, if set). Stonith resources and Pacemaker Remote
connections are never locked. Clone and bundle instances and the
promoted role of promotable clones are currently never locked, though
support could be added in a future release. Locks may be manually
cleared using the --refresh option of crm_resource (both the
resource and node must be specified; this works with remote nodes if
their connection resource’s target-role is set to Stopped, but
not if Pacemaker Remote is stopped on the remote node without disabling
the connection resource). (since 2.0.4)

	shutdown-lock-limit

	duration

	0

	If shutdown-lock is true, and this is set to a nonzero time
duration, locked resources will be allowed to start after this much time
has passed since the node shutdown was initiated, even if the node has
not rejoined. (This works with remote nodes only if their connection
resource’s target-role is set to Stopped.) (since 2.0.4)

	startup-fencing

	boolean

	true

	Advanced Use Only: Whether the cluster should fence unseen nodes at
start-up. Setting this to false is unsafe, because the unseen nodes
could be active and running resources but unreachable. dc-deadtime
acts as a grace period before this fencing, since a DC must be elected
to schedule fencing.

	election-timeout

	duration

	2min

	Advanced Use Only: If a winner is not declared within this much time
of starting an election, the node that initiated the election will
declare itself the winner.

	shutdown-escalation

	duration

	20min

	Advanced Use Only: The controller will exit immediately if a shutdown
does not complete within this much time.

	join-integration-timeout

	duration

	3min

	Advanced Use Only: If you need to adjust this value, it probably
indicates the presence of a bug.

	join-finalization-timeout

	duration

	30min

	Advanced Use Only: If you need to adjust this value, it probably
indicates the presence of a bug.

	transition-delay

	duration

	0s

	Advanced Use Only: Delay cluster recovery for the configured interval
to allow for additional or related events to occur. This can be useful
if your configuration is sensitive to the order in which ping updates
arrive. Enabling this option will slow down cluster recovery under all
conditions.

4. Nodes

Pacemaker supports two basic types of nodes: cluster nodes and Pacemaker
Remote nodes.

4.1. Cluster nodes

Cluster nodes run Corosync and all Pacemaker components. They may run cluster
resources, run all Pacemaker command-line tools, execute fencing actions, count
toward cluster quorum, and serve as the cluster’s Designated Controller (DC).

Every cluster must have at least one cluster node. Scalability is limited by
the cluster layer to around 32 cluster nodes.

4.1.1. Host Clock Considerations

In general, Pacemaker does not rely on time or time zones being synchronized
across nodes. However, if the configuration uses date/time-based rules, synchronization is a good idea, otherwise the rules will evaluate
differently depending on which node is the Designated Controller (DC). Also,
synchronization is greatly helpful when comparing logs across multiple nodes
for problem investigation.

If a node’s clock jumps forward, you may see relatively minor issues such as
various timeouts suddenly being considered expired.

If a node’s clock jumps backward, more serious problems may occur, so this
should be avoided. If the host clock is adjusted at boot, and Pacemaker is
enabled at boot, Pacemaker’s start should be ordered after the clock
adjustment. When run under systemd, Pacemaker will automatically order itself
after time-sync.target. However, depending on the local setup, you may need
to enable an additional service (for example, chronyd-wait.service) for
that to be effective, or write your own workaround (for example, see the
discussion on
systemd issue#5097 [https://github.com/systemd/systemd/issues/5097].

4.2. Pacemaker Remote nodes

Pacemaker Remote nodes do not run Corosync or the usual Pacemaker components.
Instead, they run only the remote executor (pacemaker-remoted), which
waits for Pacemaker on a cluster node to give it instructions.

They may run cluster resources and most command-line tools, but cannot perform
other functions of full cluster nodes such as fencing execution, quorum voting,
or DC eligibility.

There is no hard limit on the number of Pacemaker Remote nodes.

Note

Remote in this document has nothing to do with physical proximity and
instead refers to the node not being a member of the underlying Corosync
cluster. Pacemaker Remote nodes are subject to the same latency
requirements as cluster nodes, which means they are typically in the same
data center.

There are three types of Pacemaker Remote nodes:

	A remote node boots outside Pacemaker control, and is typically a physical
host. The connection to the remote node is managed as a special type of
resource configured by the user.

	A guest node is a virtual machine or container configured to run
Pacemaker’s remote executor when launched, and is launched and managed by the
cluster as a standard resource configured by the user with special
options.

	A bundle node is a guest node created for a container that is launched and
managed by the cluster as part of a bundle
resource configured by the user.

Note

It is important to distinguish the various roles a virtual machine can serve
in Pacemaker clusters:

	A virtual machine can run the full cluster stack, in which case it is a
cluster node and is not itself managed by the cluster.

	A virtual machine can be managed by the cluster as a simple resource,
without the cluster having any awareness of the services running within
it. The virtual machine is opaque to the cluster.

	A virtual machine can be a guest node, allowing the cluster to manage
both the virtual machine and resources running within it. The virtual
machine is transparent to the cluster.

4.3. Defining a Node

Each cluster node will have an entry in the nodes section containing at
least an ID and a name. A cluster node’s ID is defined by the cluster layer
(Corosync).

Example Corosync cluster node entry

<node id="101" uname="pcmk-1"/>

Pacemaker Remote nodes are defined by a resource in the resources section.
Remote nodes and guest nodes may optionally have an entry in the nodes
section, primarily for permanent node attributes.

Normally, the user should let the cluster populate the nodes section
automatically.

4.3.1. Where Pacemaker Gets the Node Name

The name that Pacemaker uses for a node in the configuration does not have to
be the same as its local hostname. Pacemaker uses the following for a cluster
node’s name, in order of most preferred first:

	The value of name in the nodelist section of corosync.conf
(nodeid must also be explicitly set there in order for Pacemaker to
associate the name with the node)

	The value of ring0_addr in the nodelist section of corosync.conf

	The local hostname (value of uname -n)

A Pacemaker Remote node’s name is defined in its resource configuration.

If the cluster is running, the crm_node -n command will display the local
node’s name as used by the cluster.

If a Corosync nodelist is used, crm_node --name-for-id with a Corosync
node ID will display the name used by the node with the given Corosync
nodeid, for example:

crm_node --name-for-id 2

4.4. Quorum-only Nodes

One popular cluster design uses an even number of cluster nodes (often 2), with
an additional lightweight host that contributes to providing quorum but cannot
run resources.

With Pacemaker, this can be achieved in either of two ways:

	When Corosync is used as the underlying cluster layer, the lightweight host
can run qdevice [https://github.com/corosync/corosync-qdevice] instead of
Corosync and Pacemaker.

	The lightweight host can be configured as a Pacemaker cluster node, and a
location constraint can be configured for the
node with score set to -INFINITY, rsc-pattern set to .*, and
resource-discovey set to never.

4.5. Node Attributes

Pacemaker allows node-specific values to be specified using node attributes.
A node attribute has a name, and may have a distinct value for each node.

Node attributes come in two types, permanent and transient. Permanent node
attributes are kept within the node entry, and keep their values even if
the cluster restarts on a node. Transient node attributes are kept in the CIB’s
status section, and go away when the cluster stops on the node.

While certain node attributes have specific meanings to the cluster, they are
mainly intended to allow administrators and resource agents to track any
information desired.

For example, an administrator might choose to define node attributes for how
much RAM and disk space each node has, which OS each uses, or which server room
rack each node is in.

Users can configure Rules that use node attributes to affect where
resources are placed.

4.5.1. Setting and querying node attributes

Node attributes can be set and queried using the crm_attribute and
attrd_updater commands, so that the user does not have to deal with XML
configuration directly.

Here is an example command to set a permanent node attribute, and the XML
configuration that would be generated:

Result of using crm_attribute to specify which kernel pcmk-1 is running

crm_attribute --type nodes --node pcmk-1 --name kernel --update $(uname -r)

<node id="1" uname="pcmk-1">
 <instance_attributes id="nodes-1-attributes">
 <nvpair id="nodes-1-kernel" name="kernel" value="3.10.0-862.14.4.el7.x86_64"/>
 </instance_attributes>
</node>

To read back the value that was just set:

crm_attribute --type nodes --node pcmk-1 --name kernel --query
scope=nodes name=kernel value=3.10.0-862.14.4.el7.x86_64

The --type nodes indicates that this is a permanent node attribute;
--type status would indicate a transient node attribute.

Warning

Attribute values with newline or tab characters are currently displayed with
newlines as "\n" and tabs as "\t", when crm_attribute or
attrd_updater query commands use --output-as=text or leave
--output-as unspecified:

crm_attribute -N node1 -n test_attr -v "$(echo -e "a\nb\tc")" -t status
crm_attribute -N node1 -n test_attr --query -t status
scope=status name=test_attr value=a\nb\tc

This format is deprecated. In a future release, the values will be displayed
with literal whitespace characters:

crm_attribute -N node1 -n test_attr --query -t status
scope=status name=test_attr value=a
b c

Users should either avoid attribute values with newlines and tabs, or ensure
that they can handle both formats.

However, it’s best to use --output-as=xml when parsing attribute values
from output. Newlines, tabs, and special characters are replaced with XML
character references that a conforming XML processor can recognize and
convert to literals (since 2.1.8):

crm_attribute -N node1 -n test_attr --query -t status --output-as=xml
<pacemaker-result api-version="2.35" request="crm_attribute -N laptop -n test_attr --query -t status --output-as=xml">
 <attribute name="test_attr" value="a
b	c" scope="status"/>
 <status code="0" message="OK"/>
</pacemaker-result>

4.5.2. Special node attributes

Certain node attributes have special meaning to the cluster.

Node attribute names beginning with # are considered reserved for these
special attributes. Some special attributes do not start with #, for
historical reasons.

Certain special attributes are set automatically by the cluster, should never
be modified directly, and can be used only within Rules; these are
listed under
built-in node attributes.

For true/false values, the cluster considers a value of “1”, “y”, “yes”, “on”,
or “true” (case-insensitively) to be true, “0”, “n”, “no”, “off”, “false”, or
unset to be false, and anything else to be an error.

Node attributes with special significance

	Name

	Description

	fail-count-*

	Attributes whose names start with
fail-count- are managed by the cluster
to track how many times particular resource
operations have failed on this node. These
should be queried and cleared via the
crm_failcount or
crm_resource --cleanup commands rather
than directly.

	last-failure-*

	Attributes whose names start with
last-failure- are managed by the cluster
to track when particular resource operations
have most recently failed on this node.
These should be cleared via the
crm_failcount or
crm_resource --cleanup commands rather
than directly.

	maintenance

	If true, the cluster will not start or stop any
resources on this node. Any resources active on the
node become unmanaged, and any recurring operations
for those resources (except those specifying
role as Stopped) will be paused. The
maintenance-mode cluster
option, if true, overrides this. If this attribute
is true, it overrides the
is-managed and
maintenance
meta-attributes of affected resources and
enabled meta-attribute for
affected recurring actions. Pacemaker should not be
restarted on a node that is in single-node
maintenance mode.

	probe_complete

	This is managed by the cluster to detect
when nodes need to be reprobed, and should
never be used directly.

	resource-discovery-enabled

	If the node is a remote node, fencing is enabled,
and this attribute is explicitly set to false
(unset means true in this case), resource discovery
(probes) will not be done on this node. This is
highly discouraged; the resource-discovery
location constraint property is preferred for this
purpose.

	shutdown

	This is managed by the cluster to orchestrate the
shutdown of a node, and should never be used
directly.

	site-name

	If set, this will be used as the value of the
#site-name node attribute used in rules. (If
not set, the value of the cluster-name cluster
option will be used as #site-name instead.)

	standby

	If true, the node is in standby mode. This is
typically set and queried via the crm_standby
command rather than directly.

	terminate

	If the value is true or begins with any nonzero
number, the node will be fenced. This is typically
set by tools rather than directly.

	#digests-*

	Attributes whose names start with #digests- are
managed by the cluster to detect when
Unfencing needs to be redone, and should
never be used directly.

	#node-unfenced

	When the node was last unfenced (as seconds since
the epoch). This is managed by the cluster and
should never be used directly.

4.6. Tracking Node Health

A node may be functioning adequately as far as cluster membership is concerned,
and yet be “unhealthy” in some respect that makes it an undesirable location
for resources. For example, a disk drive may be reporting SMART errors, or the
CPU may be highly loaded.

Pacemaker offers a way to automatically move resources off unhealthy nodes.

4.6.1. Node Health Attributes

Pacemaker will treat any node attribute whose name starts with #health as
an indicator of node health. Node health attributes may have one of the
following values:

Allowed Values for Node Health Attributes

	Value

	Intended significance

	red

	This indicator is unhealthy

	yellow

	This indicator is close to unhealthy (whether worsening or
recovering)

	green

	This indicator is healthy

	integer

	A numeric score to apply to all resources on this node (0 or
positive is healthy, negative is unhealthy)

Note

A health attribute may technically be transient or permanent, but generally
only transient makes sense.

Note

red, yellow, and green function as aliases for particular
numeric scores as described later.

4.6.2. Node Health Strategy

Pacemaker assigns a node health score to each node, as the sum of the values of
all its node health attributes. This score will be used as a location
constraint applied to this node for all resources.

The node-health-strategy cluster option controls how Pacemaker responds to
changes in node health attributes, and how it translates red, yellow,
and green to scores.

Allowed values are:

Node Health Strategies

	Value

	Effect

	none

	Do not track node health attributes at all.

	migrate-on-red

	Assign the value of -INFINITY to red, and 0 to
yellow and green. This will cause all resources
to move off the node if any attribute is red.

	only-green

	Assign the value of -INFINITY to red and
yellow, and 0 to green. This will cause all
resources to move off the node if any attribute is
red or yellow.

	progressive

	Assign the value of the node-health-red cluster
option to red, the value of node-health-yellow
to yellow, and the value of node-health-green to
green. Each node is additionally assigned a score of
node-health-base (this allows resources to start
even if some attributes are yellow). This strategy
gives the administrator finer control over how important
each value is.

	custom

	Track node health attributes using the same values as
progressive for red, yellow, and green,
but do not take them into account. The administrator is
expected to implement a policy by defining Rules
referencing node health attributes.

4.6.3. Exempting a Resource from Health Restrictions

If you want a resource to be able to run on a node even if its health score
would otherwise prevent it, set the resource’s allow-unhealthy-nodes
meta-attribute to true (available since 2.1.3).

This is particularly useful for node health agents, to allow them to detect
when the node becomes healthy again. If you configure a health agent without
this setting, then the health agent will be banned from an unhealthy node,
and you will have to investigate and clear the health attribute manually once
it is healthy to allow resources on the node again.

If you want the meta-attribute to apply to a clone, it must be set on the clone
itself, not on the resource being cloned.

4.6.4. Configuring Node Health Agents

Since Pacemaker calculates node health based on node attributes, any method
that sets node attributes may be used to measure node health. The most common
are resource agents and custom daemons.

Pacemaker provides examples that can be used directly or as a basis for custom
code. The ocf:pacemaker:HealthCPU, ocf:pacemaker:HealthIOWait, and
ocf:pacemaker:HealthSMART resource agents set node health attributes based
on CPU and disk status.

To take advantage of this feature, add the resource to your cluster (generally
as a cloned resource with a recurring monitor action, to continually check the
health of all nodes). For example:

Example HealthIOWait resource configuration

<clone id="resHealthIOWait-clone">
 <primitive class="ocf" id="HealthIOWait" provider="pacemaker" type="HealthIOWait">
 <instance_attributes id="resHealthIOWait-instance_attributes">
 <nvpair id="resHealthIOWait-instance_attributes-red_limit" name="red_limit" value="30"/>
 <nvpair id="resHealthIOWait-instance_attributes-yellow_limit" name="yellow_limit" value="10"/>
 </instance_attributes>
 <operations>
 <op id="resHealthIOWait-monitor-interval-5" interval="5" name="monitor" timeout="5"/>
 <op id="resHealthIOWait-start-interval-0s" interval="0s" name="start" timeout="10s"/>
 <op id="resHealthIOWait-stop-interval-0s" interval="0s" name="stop" timeout="10s"/>
 </operations>
 </primitive>
</clone>

The resource agents use attrd_updater to set proper status for each node
running this resource, as a node attribute whose name starts with #health
(for HealthIOWait, the node attribute is named #health-iowait).

When a node is no longer faulty, you can force the cluster to make it available
to take resources without waiting for the next monitor, by setting the node
health attribute to green. For example:

Force node1 to be marked as healthy

attrd_updater --name "#health-iowait" --update "green" --node "node1"

5. Resources

A resource is a service managed by Pacemaker. The simplest type of resource,
a primitive, is described in this chapter. More complex forms, such as groups
and clones, are described in later chapters.

Every primitive has a resource agent that provides Pacemaker a standardized
interface for managing the service. This allows Pacemaker to be agnostic about
the services it manages. Pacemaker doesn’t need to understand how the service
works because it relies on the resource agent to do the right thing when asked.

Every resource has a standard (also called class) specifying the interface
that its resource agent follows, and a type identifying the specific service
being managed.

5.1. Resource Standards

Pacemaker can use resource agents complying with these standards, described in
more detail below:

	ocf

	lsb

	systemd

	service

	stonith

Support for some standards is controlled by build options and so might not be
available in any particular build of Pacemaker. The command crm_resource
--list-standards will show which standards are supported by the local build.

5.1.1. Open Cluster Framework

The Open Cluster Framework (OCF) Resource Agent API is a ClusterLabs
standard for managing services. It is the most preferred since it is
specifically designed for use in a Pacemaker cluster.

OCF agents are scripts that support a variety of actions including start,
stop, and monitor. They may accept parameters, making them more
flexible than other standards. The number and purpose of parameters is left to
the agent, which advertises them via the meta-data action.

Unlike other standards, OCF agents have a provider as well as a standard and
type.

For more information, see the “Resource Agents” chapter of Pacemaker
Administration and the OCF standard [https://github.com/ClusterLabs/OCF-spec/tree/main/ra].

5.1.2. Systemd

Most Linux distributions use Systemd [http://www.freedesktop.org/wiki/Software/systemd] for system initialization
and service management. Unit files specify how to manage services and are
usually provided by the distribution.

Pacemaker can manage systemd units of type service, socket, mount, timer, or
path. Simply create a resource with systemd as the resource standard and
the unit file name as the resource type. Do not run systemctl enable on
the unit.

Important

Make sure that any systemd services to be controlled by the cluster are
not enabled to start at boot.

5.1.3. Linux Standard Base

LSB resource agents, also known as SysV-style [https://en.wikipedia.org/wiki/Init#SysV-styleinitscripts], are scripts that
provide start, stop, and status actions for a service.

They are provided by some operating system distributions. If a full path is not
given, they are assumed to be located in a directory specified when your
Pacemaker software was built (usually /etc/init.d).

In order to be used with Pacemaker, they must conform to the LSB specification [http://refspecs.linux-foundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html]
as it relates to init scripts.

Warning

Some LSB scripts do not fully comply with the standard. For details on how
to check whether your script is LSB-compatible, see the “Resource Agents”
chapter of Pacemaker Administration. Common problems include:

	Not implementing the status action

	Not observing the correct exit status codes

	Starting a started resource returns an error

	Stopping a stopped resource returns an error

Important

Make sure the host is not configured to start any LSB services at boot
that will be controlled by the cluster.

5.1.4. System Services

Since there is more than one type of system service (systemd and lsb),
Pacemaker supports a special service alias which intelligently figures out
which one applies to a given cluster node.

This is particularly useful when the cluster contains a mix of systemd and
lsb.

If the service standard is specified, Pacemaker will try to find the named
service as an LSB init script, and if none exists, a systemd unit file.

5.1.5. STONITH

The stonith standard is used for managing fencing devices, discussed later
in Fencing.

5.2. Resource Properties

These values tell the cluster which resource agent to use for the resource,
where to find that resource agent and what standards it conforms to.

Properties of a Primitive Resource

	Field

	Description

	id

	Your name for the resource

	class

	The standard the resource agent conforms to. Allowed values:
lsb, ocf, service, stonith, and systemd

	description

	Arbitrary text for user’s use (ignored by Pacemaker)

	type

	The name of the Resource Agent you wish to use. E.g.
IPaddr or Filesystem

	provider

	The OCF spec allows multiple vendors to supply the same resource
agent. To use the OCF resource agents supplied by the Heartbeat
project, you would specify heartbeat here.

The XML definition of a resource can be queried with the crm_resource tool.
For example:

crm_resource --resource Email --query-xml

might produce:

A system resource definition

<primitive id="Email" class="service" type="exim"/>

Note

One of the main drawbacks to system services (lsb and systemd)
is that they do not allow parameters

An OCF resource definition

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="Public-IP-params">
 <nvpair id="Public-IP-ip" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

5.3. Resource Options

Resources have two types of options: meta-attributes and instance attributes.
Meta-attributes apply to any type of resource, while instance attributes
are specific to each resource agent.

5.3.1. Resource Meta-Attributes

Meta-attributes are used by the cluster to decide how a resource should
behave and can be easily set using the --meta option of the
crm_resource command.

Meta-attributes of a Primitive Resource

	Name

	Type

	Default

	Description

	priority

	score

	0

	If not all resources can be active, the cluster will stop lower-priority
resources in order to keep higher-priority ones active.

	critical

	boolean

	true

	Use this value as the default for influence in all
colocation constraints involving this
resource, as well as in the implicit colocation constraints created if
this resource is in a group. For details, see
Colocation Influence. (since 2.1.0)

	target-role

	enumeration

	Started

	What state should the cluster attempt to keep this resource in? Allowed
values:

	Stopped: Force the resource to be stopped

	Started: Allow the resource to be started (and in the case of
promotable clone resources, promoted if
appropriate)

	Unpromoted: Allow the resource to be started, but only in the
unpromoted role if the resource is
promotable

	Promoted: Equivalent to Started

	is-managed

	boolean

	true

	If false, the cluster will not start, stop, promote, or demote the
resource on any node. Recurring actions for the resource are
unaffected. Maintenance mode overrides this setting.

	maintenance

	boolean

	false

	If true, the cluster will not start, stop, promote, or demote the
resource on any node, and will pause any recurring monitors (except those
specifying role as Stopped). If true, the
maintenance-mode cluster option or
maintenance node attribute overrides this.

	resource-stickiness

	score

	1 for individual clone instances, 0 for all other resources

	A score that will be added to the current node when a resource is already
active. This allows running resources to stay where they are, even if
they would be placed elsewhere if they were being started from a stopped
state.

	requires

	enumeration

	quorum for resources with a class of stonith, otherwise
unfencing if unfencing is active in the cluster, otherwise
fencing if stonith-enabled is true, otherwise quorum

	Conditions under which the resource can be started. Allowed values:

	nothing: The cluster can always start this resource.

	quorum: The cluster can start this resource only if a majority of
the configured nodes are active.

	fencing: The cluster can start this resource only if a majority of
the configured nodes are active and any failed or unknown nodes have
been fenced.

	unfencing: The cluster can only start this resource if a majority
of the configured nodes are active and any failed or unknown nodes
have been fenced and only on nodes that have been
unfenced.

	migration-threshold

	score

	INFINITY

	How many failures may occur for this resource on a node, before this node
is marked ineligible to host this resource. A value of 0 indicates that
this feature is disabled (the node will never be marked ineligible); by
contrast, the cluster treats INFINITY (the default) as a very large
but finite number. This option has an effect only if the failed operation
specifies on-fail as restart (the default), and additionally for
failed start operations, if the cluster property
start-failure-is-fatal is false.

	failure-timeout

	duration

	0

	Ignore previously failed resource actions after this much time has
passed without new failures (potentially allowing the resource back to
the node on which it failed, if it previously reached its
migration-threshold there). A value of 0 indicates that failures do
not expire. WARNING: If this value is low, and pending cluster
activity prevents the cluster from responding to a failure within that
time, then the failure will be ignored completely and will not cause
recovery of the resource, even if a recurring action continues to report
failure. It should be at least greater than the longest action
timeout for all resources in the cluster. A value in hours
or days is reasonable.

	multiple-active

	enumeration

	stop_start

	What should the cluster do if it ever finds the resource active on more
than one node? Allowed values:

	block: mark the resource as unmanaged

	stop_only: stop all active instances and leave them that way

	stop_start: stop all active instances and start the resource in one
location only

	stop_unexpected: stop all active instances except where the
resource should be active (this should be used only when extra
instances are not expected to disrupt existing instances, and the
resource agent’s monitor of an existing instance is capable of
detecting any problems that could be caused; note that any resources
ordered after this will still need to be restarted) (since 2.1.3)

	allow-migrate

	boolean

	true for ocf:pacemaker:remote resources, false otherwise

	Whether the cluster should try to “live migrate” this resource when it
needs to be moved (see Migrating Resources)

	allow-unhealthy-nodes

	boolean

	false

	Whether the resource should be able to run on a node even if the node’s
health score would otherwise prevent it (see Tracking Node Health) (since
2.1.3)

	container-attribute-target

	enumeration

	
	Specific to bundle resources; see Bundle Node Attributes

As an example of setting resource options, if you performed the following
commands on an LSB Email resource:

crm_resource --meta --resource Email --set-parameter priority --parameter-value 100
crm_resource -m -r Email -p multiple-active -v block

the resulting resource definition might be:

An LSB resource with cluster options

<primitive id="Email" class="lsb" type="exim">
 <meta_attributes id="Email-meta_attributes">
 <nvpair id="Email-meta_attributes-priority" name="priority" value="100"/>
 <nvpair id="Email-meta_attributes-multiple-active" name="multiple-active" value="block"/>
 </meta_attributes>
</primitive>

In addition to the cluster-defined meta-attributes described above, you may
also configure arbitrary meta-attributes of your own choosing. Most commonly,
this would be done for use in rules. For example, an IT department
might define a custom meta-attribute to indicate which company department each
resource is intended for. To reduce the chance of name collisions with
cluster-defined meta-attributes added in the future, it is recommended to use
a unique, organization-specific prefix for such attributes.

5.3.2. Setting Global Defaults for Resource Meta-Attributes

To set a default value for a resource option, add it to the
rsc_defaults section with crm_attribute. For example,

crm_attribute --type rsc_defaults --name is-managed --update false

would prevent the cluster from starting or stopping any of the
resources in the configuration (unless of course the individual
resources were specifically enabled by having their is-managed set to
true).

5.3.3. Resource Instance Attributes

The resource agents of some resource standards (lsb and systemd not among
them) can be given parameters which determine how they behave and which
instance of a service they control.

If your resource agent supports parameters, you can add them with the
crm_resource command. For example,

crm_resource --resource Public-IP --set-parameter ip --parameter-value 192.0.2.2

would create an entry in the resource like this:

An example OCF resource with instance attributes

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

For an OCF resource, the result would be an environment variable
called OCF_RESKEY_ip with a value of 192.0.2.2.

The list of instance attributes supported by an OCF resource agent can be
found by calling the resource agent with the meta-data command.
The output contains an XML description of all the supported
attributes, their purpose and default values.

Displaying the metadata for the Dummy resource agent template

export OCF_ROOT=/usr/lib/ocf
$OCF_ROOT/resource.d/pacemaker/Dummy meta-data

<?xml version="1.0"?>
<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="Dummy" version="2.0">
<version>1.1</version>

<longdesc lang="en">
This is a dummy OCF resource agent. It does absolutely nothing except keep track
of whether it is running or not, and can be configured so that actions fail or
take a long time. Its purpose is primarily for testing, and to serve as a
template for resource agent writers.
</longdesc>
<shortdesc lang="en">Example stateless resource agent</shortdesc>

<parameters>
<parameter name="state" unique-group="state">
<longdesc lang="en">
Location to store the resource state in.
</longdesc>
<shortdesc lang="en">State file</shortdesc>
<content type="string" default="/var/run/Dummy-RESOURCE_ID.state" />
</parameter>

<parameter name="passwd" reloadable="1">
<longdesc lang="en">
Fake password field
</longdesc>
<shortdesc lang="en">Password</shortdesc>
<content type="string" default="" />
</parameter>

<parameter name="fake" reloadable="1">
<longdesc lang="en">
Fake attribute that can be changed to cause a reload
</longdesc>
<shortdesc lang="en">Fake attribute that can be changed to cause a reload</shortdesc>
<content type="string" default="dummy" />
</parameter>

<parameter name="op_sleep" reloadable="1">
<longdesc lang="en">
Number of seconds to sleep during operations. This can be used to test how
the cluster reacts to operation timeouts.
</longdesc>
<shortdesc lang="en">Operation sleep duration in seconds.</shortdesc>
<content type="string" default="0" />
</parameter>

<parameter name="fail_start_on" reloadable="1">
<longdesc lang="en">
Start, migrate_from, and reload-agent actions will return failure if running on
the host specified here, but the resource will run successfully anyway (future
monitor calls will find it running). This can be used to test on-fail=ignore.
</longdesc>
<shortdesc lang="en">Report bogus start failure on specified host</shortdesc>
<content type="string" default="" />
</parameter>
<parameter name="envfile" reloadable="1">
<longdesc lang="en">
If this is set, the environment will be dumped to this file for every call.
</longdesc>
<shortdesc lang="en">Environment dump file</shortdesc>
<content type="string" default="" />
</parameter>

</parameters>

<actions>
<action name="start" timeout="20s" />
<action name="stop" timeout="20s" />
<action name="monitor" timeout="20s" interval="10s" depth="0"/>
<action name="reload" timeout="20s" />
<action name="reload-agent" timeout="20s" />
<action name="migrate_to" timeout="20s" />
<action name="migrate_from" timeout="20s" />
<action name="validate-all" timeout="20s" />
<action name="meta-data" timeout="5s" />
</actions>
</resource-agent>

5.4. Pacemaker Remote Resources

Pacemaker Remote nodes are defined by resources.

5.4.1. Remote nodes

A remote node is defined by a connection resource using the special,
built-in ocf:pacemaker:remote resource agent.

ocf:pacemaker:remote Instance Attributes

	Name

	Type

	Default

	Description

	server

	text

	resource ID

	Hostname or IP address used to connect to the remote node. The remote
executor on the remote node must be configured to accept connections on
this address.

	port

	port

	3121

	TCP port on the remote node used for its Pacemaker Remote connection.
The remote executor on the remote node must be configured to listen on
this port.

	reconnect_interval

	duration

	0

	If positive, the cluster will attempt to reconnect to a remote node
at this interval after an active connection has been lost. Otherwise,
the cluster will attempt to reconnect immediately (after any fencing, if
needed).

5.4.2. Guest Nodes

When configuring a virtual machine as a guest node, the virtual machine is
created using one of the usual resource agents for that purpose (for example,
ocf:heartbeat:VirtualDomain or ocf:heartbeat:Xen), with additional
meta-attributes.

No restrictions are enforced on what agents may be used to create a guest node,
but obviously the agent must create a distinct environment capable of running
the remote executor and cluster resources. An additional requirement is that
fencing the node hosting the guest node resource must be sufficient for
ensuring the guest node is stopped. This means that not all hypervisors
supported by VirtualDomain may be used to create guest nodes; if the guest
can survive the hypervisor being fenced, it is unsuitable for use as a guest
node.

Guest node meta-attributes

	Name

	Type

	Default

	Description

	remote-node

	text

	
	If specified, this resource defines a guest node using this node name.
The guest must be configured to run the remote executor when it is
started. This value must not be the same as any resource or node ID.

	remote-addr

	text

	value of remote-node

	If remote-node is specified, the hostname or IP address used to
connect to the guest. The remote executor on the guest must be
configured to accept connections on this address.

	remote-port

	port

	3121

	If remote-node is specified, the port on the guest used for its
Pacemaker Remote connection. The remote executor on the guest must be
configured to listen on this port.

	remote-connect-timeout

	timeout

	60s

	If remote-node is specified, how long before a pending guest
connection will time out.

	remote-allow-migrate

	boolean

	true

	If remote-node is specified, this acts as the allow-migrate
meta-attribute for its implicitly created remote connection resource
(ocf:pacemaker:remote).

5.4.3. Removing Pacemaker Remote Nodes

If the resource creating a remote node connection or guest node is removed from
the configuration, status output may continue to show the affected node (as
offline).

If you want to get rid of that output, run the following command, replacing
$NODE_NAME appropriately:

crm_node --force --remove $NODE_NAME

Warning

Be absolutely sure that there are no references to the node’s resource in the
configuration before running the above command.

6. Resource Operations

Operations are actions the cluster can perform on a resource by calling the
resource agent. Resource agents must support certain common operations such as
start, stop, and monitor, and may implement any others.

Operations may be explicitly configured for two purposes: to override defaults
for options (such as timeout) that the cluster will use whenever it initiates
the operation, and to run an operation on a recurring basis (for example, to
monitor the resource for failure).

An OCF resource with a non-default start timeout

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="Public-IP-start" name="start" timeout="60s"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

Pacemaker identifies operations by a combination of name and interval, so this
combination must be unique for each resource. That is, you should not configure
two operations for the same resource with the same name and interval.

6.1. Operation Properties

The id, name, interval, and role operation properties may be
specified only as XML attributes of the op element. Other operation
properties may be specified in any of the following ways, from highest
precedence to lowest:

	directly in the op element as an XML attribute

	in an nvpair element within a meta_attributes element within the
op element

	in an nvpair element within a meta_attributes element within
operation defaults

If not specified, the default from the table below is used.

Operation Properties

	Name

	Type

	Default

	Description

	id

	id

	
	A unique identifier for the XML element (required)

	name

	text

	
	An action name supported by the resource agent (required)

	interval

	duration

	0

	If this is a positive value, Pacemaker will schedule recurring instances
of this operation at the given interval (which makes sense only with
name set to monitor). If
this is 0, Pacemaker will apply other properties configured for this
operation to instances that are scheduled as needed during normal
cluster operation. (required)

	description

	text

	
	Arbitrary text for user’s use (ignored by Pacemaker)

	role

	enumeration

	
	If this is set, the operation configuration applies only on nodes where
the cluster expects the resource to be in the specified role. This makes
sense only for recurring monitors. Allowed values: Started,
Stopped, and in the case of promotable clone resources, Unpromoted and Promoted.

	timeout

	timeout

	20s

	If resource agent execution does not complete within this amount of
time, the action will be considered failed. Note: timeouts for
fencing agents are handled specially (see the Fencing chapter).

	on-fail

	enumeration

	
	If name is stop: fence if
stonith-enabled is true, otherwise block

	If name is demote: on-fail of the monitor action with
role set to Promoted, if present, enabled, and configured to a
value other than demote, or restart otherwise

	Otherwise: restart

	How the cluster should respond to a failure of this action. Allowed
values:

	ignore: Pretend the resource did not fail

	block: Do not perform any further operations on the resource

	stop: Stop the resource and leave it stopped

	demote: Demote the resource, without a full restart. This is valid
only for promote actions, and for monitor actions with both a
nonzero interval and role set to Promoted; for any other
action, a configuration error will be logged, and the default behavior
will be used. (since 2.0.5)

	restart: Stop the resource, and start it again if allowed
(possibly on a different node)

	fence: Fence the node on which the resource failed

	standby: Put the node on which the resource failed in standby mode
(forcing all resources away)

	enabled

	boolean

	true

	If false, ignore this operation definition. This does not suppress
all actions of this type, but is typically used to pause a recurring
monitor. This can complement the resource being unmanaged
(is-managed set to false), which does not stop
recurring operations. Maintenance mode, which does stop configured
monitors, overrides this setting.

	interval-origin

	ISO 8601

	
	If set for a recurring action, the action will be scheduled for this
time plus a multiple of the action’s interval, rather than immediately
after the resource gains the monitored role. For example, you might
schedule an in-depth monitor to run once per day outside business hours,
by setting this to the desired time (on any date) and setting
interval to 24h. At most one of interval-origin and
start-delay may be set.

	start-delay

	duration

	
	If set, the cluster will wait this long before running the action (for
the first time, if recurring). This is an advanced option that should
generally be avoided. It can be useful for a recurring monitor if a
resource agent incorrectly returns success from start before the service
is actually ready, and the agent can’t be corrected, or for a start
action if a service takes a very long time to start, and you don’t want
to block the cluster from responding to other events during that time.
If this delay is longer than 5 minutes, the cluster will pretend that
the action succeeded when it is first scheduled for the purpose of other
actions needed, then act on the result when it actually runs. At most
one of interval-origin and start-delay may be set.

	record-pending

	boolean

	true

	Operation results are always recorded when the operation completes
(successful or not). If this is true, operations will also be
recorded when initiated, so that status output can indicate that the
operation is in progress. (deprecated since 3.0.0)

Note

Only one action can be configured for any given combination of name and
interval.

Note

When on-fail is set to demote, recovery from failure by a successful
demote causes the cluster to recalculate whether and where a new instance
should be promoted. The node with the failure is eligible, so if promotion
scores have not changed, it will be promoted again.

There is no direct equivalent of migration-threshold for the promoted
role, but the same effect can be achieved with a location constraint using a
rule with a node attribute expression for the resource’s fail
count.

For example, to immediately ban the promoted role from a node with any
failed promote or promoted instance monitor:

<rsc_location id="loc1" rsc="my_primitive">
 <rule id="rule1" score="-INFINITY" role="Promoted" boolean-op="or">
 <expression id="expr1" attribute="fail-count-my_primitive#promote_0"
 operation="gte" value="1"/>
 <expression id="expr2" attribute="fail-count-my_primitive#monitor_10000"
 operation="gte" value="1"/>
 </rule>
</rsc_location>

This example assumes that there is a promotable clone of the my_primitive
resource (note that the primitive name, not the clone name, is used in the
rule), and that there is a recurring 10-second-interval monitor configured for
the promoted role (fail count attributes specify the interval in
milliseconds).

6.2. Monitoring Resources for Failure

When Pacemaker first starts a resource, it runs one-time monitor operations
(referred to as probes) to ensure the resource is running where it’s
supposed to be, and not running where it’s not supposed to be. (This behavior
can be affected by the resource-discovery location constraint property.)

Other than those initial probes, Pacemaker will not (by default) check that
the resource continues to stay healthy 1. You must configure monitor
operations explicitly to perform these checks.

An OCF resource with a recurring health check

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="Public-IP-start" name="start" timeout="60s"/>
 <op id="Public-IP-monitor" name="monitor" interval="60s"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

By default, a monitor operation will ensure that the resource is running
where it is supposed to. The target-role property can be used for further
checking.

For example, if a resource has one monitor operation with
interval=10 role=Started and a second monitor operation with
interval=11 role=Stopped, the cluster will run the first monitor on any nodes
it thinks should be running the resource, and the second monitor on any nodes
that it thinks should not be running the resource (for the truly paranoid,
who want to know when an administrator manually starts a service by mistake).

Note

Currently, monitors with role=Stopped are not implemented for
clone resources.

6.3. Custom Recurring Operations

Typically, only monitor operations should be configured as recurring.
However, it is possible to implement a custom action name in an OCF agent and
then configure that as a recurring operation.

This could be useful, for example, to run a report, rotate a log, or clean
temporary files related to a particular service.

Failures of custom recurring operations will be ignored by the cluster and will
not be reported in cluster status (since 3.0.0; previously, they would be
treated like failed monitors). A fail count and last failure timestamp will be
recorded as transient node attributes, and those node attributes will be erased
by the crm_resource --cleanup command.

6.4. Setting Global Defaults for Operations

You can change the global default values for operation properties
in a given cluster. These are defined in an op_defaults section
of the CIB’s configuration section, and can be set with
crm_attribute. For example,

crm_attribute --type op_defaults --name timeout --update 20s

would default each operation’s timeout to 20 seconds. If an
operation’s definition also includes a value for timeout, then that
value would be used for that operation instead.

6.5. When Implicit Operations Take a Long Time

The cluster will always perform a number of implicit operations: start,
stop and a non-recurring monitor operation used at startup to check
whether the resource is already active. If one of these is taking too long,
then you can create an entry for them and specify a longer timeout.

An OCF resource with custom timeouts for its implicit actions

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-startup" name="monitor" interval="0" timeout="90s"/>
 <op id="public-ip-start" name="start" interval="0" timeout="180s"/>
 <op id="public-ip-stop" name="stop" interval="0" timeout="15min"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

6.6. Multiple Monitor Operations

Provided no two operations (for a single resource) have the same name
and interval, you can have as many monitor operations as you like.
In this way, you can do a superficial health check every minute and
progressively more intense ones at higher intervals.

To tell the resource agent what kind of check to perform, you need to
provide each monitor with a different value for a common parameter.
The OCF standard creates a special parameter called OCF_CHECK_LEVEL
for this purpose and dictates that it is “made available to the
resource agent without the normal OCF_RESKEY prefix”.

Whatever name you choose, you can specify it by adding an
instance_attributes block to the op tag. It is up to each
resource agent to look for the parameter and decide how to use it.

An OCF resource with two recurring health checks, performing
 different levels of checks specified via OCF_CHECK_LEVEL.

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-health-60" name="monitor" interval="60">
 <instance_attributes id="params-public-ip-depth-60">
 <nvpair id="public-ip-depth-60" name="OCF_CHECK_LEVEL" value="10"/>
 </instance_attributes>
 </op>
 <op id="public-ip-health-300" name="monitor" interval="300">
 <instance_attributes id="params-public-ip-depth-300">
 <nvpair id="public-ip-depth-300" name="OCF_CHECK_LEVEL" value="20"/>
 </instance_attributes>
 </op>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-level" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

6.7. Disabling a Monitor Operation

The easiest way to stop a recurring monitor is to just delete it.
However, there can be times when you only want to disable it
temporarily. In such cases, simply add enabled=false to the
operation’s definition.

Example of an OCF resource with a disabled health check

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-check" name="monitor" interval="60s" enabled="false"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

This can be achieved from the command line by executing:

cibadmin --modify --xml-text '<op id="public-ip-check" enabled="false"/>'

Once you’ve done whatever you needed to do, you can then re-enable it with

cibadmin --modify --xml-text '<op id="public-ip-check" enabled="true"/>'

6.8. Handling Resource Failure

By default, Pacemaker will attempt to recover failed resources by restarting
them. However, failure recovery is highly configurable.

6.8.1. Failure Counts

Pacemaker tracks resource failures for each combination of node, resource, and
operation (start, stop, monitor, etc.).

You can query the fail count for a particular node, resource, and/or operation
using the crm_failcount command. For example, to see how many times the
10-second monitor for myrsc has failed on node1, run:

crm_failcount --query -r myrsc -N node1 -n monitor -I 10s

If you omit the node, crm_failcount will use the local node. If you omit
the operation and interval, crm_failcount will display the sum of the fail
counts for all operations on the resource.

You can use crm_resource --cleanup or crm_failcount --delete to clear
fail counts. For example, to clear the above monitor failures, run:

crm_resource --cleanup -r myrsc -N node1 -n monitor -I 10s

If you omit the resource, crm_resource --cleanup will clear failures for
all resources. If you omit the node, it will clear failures on all nodes. If
you omit the operation and interval, it will clear the failures for all
operations on the resource.

Note

Even when cleaning up only a single operation, all failed operations will
disappear from the status display. This allows us to trigger a re-check of
the resource’s current status.

Higher-level tools may provide other commands for querying and clearing
fail counts.

The crm_mon tool shows the current cluster status, including any failed
operations. To see the current fail counts for any failed resources, call
crm_mon with the --failcounts option. This shows the fail counts per
resource (that is, the sum of any operation fail counts for the resource).

6.8.2. Failure Response

Normally, if a running resource fails, pacemaker will try to stop it and start
it again. Pacemaker will choose the best location to start it each time, which
may be the same node that it failed on.

However, if a resource fails repeatedly, it is possible that there is an
underlying problem on that node, and you might desire trying a different node
in such a case. Pacemaker allows you to set your preference via the
migration-threshold resource meta-attribute. 2

If you define migration-threshold to N for a resource, it will be banned
from the original node after N failures there.

Note

The migration-threshold is per resource, even though fail counts are
tracked per operation. The operation fail counts are added together
to compare against the migration-threshold.

By default, fail counts remain until manually cleared by an administrator
using crm_resource --cleanup or crm_failcount --delete (hopefully after
first fixing the failure’s cause). It is possible to have fail counts expire
automatically by setting the failure-timeout resource meta-attribute.

Important

A successful operation does not clear past failures. If a recurring monitor
operation fails once, succeeds many times, then fails again days later, its
fail count is 2. Fail counts are cleared only by manual intervention or
failure timeout.

For example, setting migration-threshold to 2 and failure-timeout to
60s would cause the resource to move to a new node after 2 failures, and
allow it to move back (depending on stickiness and constraint scores) after one
minute.

Note

failure-timeout is measured since the most recent failure. That is, older
failures do not individually time out and lower the fail count. Instead, all
failures are timed out simultaneously (and the fail count is reset to 0) if
there is no new failure for the timeout period.

There are two exceptions to the migration threshold: when a resource either
fails to start or fails to stop.

If the cluster property start-failure-is-fatal is set to true (which is
the default), start failures cause the fail count to be set to INFINITY and
thus always cause the resource to move immediately.

Stop failures are slightly different and crucial. If a resource fails to stop
and fencing is enabled, then the cluster will fence the node in order to be
able to start the resource elsewhere. If fencing is disabled, then the cluster
has no way to continue and will not try to start the resource elsewhere, but
will try to stop it again after any failure timeout or clearing.

6.9. Reloading an Agent After a Definition Change

The cluster automatically detects changes to the configuration of active
resources. The cluster’s normal response is to stop the service (using the old
definition) and start it again (with the new definition). This works, but some
resource agents are smarter and can be told to use a new set of options without
restarting.

To take advantage of this capability, the resource agent must:

	Implement the reload-agent action. What it should do depends completely
on your application!

Note

Resource agents may also implement a reload action to make the managed
service reload its own native configuration. This is different from
reload-agent, which makes effective changes in the resource’s
Pacemaker configuration (specifically, the values of the agent’s
reloadable parameters).

	Advertise the reload-agent operation in the actions section of its
meta-data.

	Set the reloadable attribute to 1 in the parameters section of
its meta-data for any parameters eligible to be reloaded after a change.

Once these requirements are satisfied, the cluster will automatically know to
reload the resource (instead of restarting) when a reloadable parameter
changes.

Note

Metadata will not be re-read unless the resource needs to be started. If you
edit the agent of an already active resource to set a parameter reloadable,
the resource may restart the first time the parameter value changes.

Note

If both a reloadable and non-reloadable parameter are changed
simultaneously, the resource will be restarted.

6.10. Migrating Resources

Normally, when the cluster needs to move a resource, it fully restarts the
resource (that is, it stops the resource on the current node and starts it on
the new node).

However, some types of resources, such as many virtual machines, are able to
move to another location without loss of state (often referred to as live
migration or hot migration). In pacemaker, this is called live migration.
Pacemaker can be configured to migrate a resource when moving it, rather than
restarting it.

Not all resources are able to migrate; see the
migration checklist below. Even those that can,
won’t do so in all situations. Conceptually, there are two requirements from
which the other prerequisites follow:

	The resource must be active and healthy at the old location; and

	everything required for the resource to run must be available on both the old
and new locations.

The cluster is able to accommodate both push and pull migration models by
requiring the resource agent to support two special actions: migrate_to
(performed on the current location) and migrate_from (performed on the
destination).

In push migration, the process on the current location transfers the resource
to the new location where is it later activated. In this scenario, most of the
work would be done in the migrate_to action and, if anything, the
activation would occur during migrate_from.

Conversely for pull, the migrate_to action is practically empty and
migrate_from does most of the work, extracting the relevant resource state
from the old location and activating it.

There is no wrong or right way for a resource agent to implement migration, as
long as it works.

Migration Checklist

	The resource may not be a clone.

	The resource agent standard must be OCF.

	The resource must not be in a failed or degraded state.

	The resource agent must support migrate_to and migrate_from
actions, and advertise them in its meta-data.

	The resource must have the allow-migrate meta-attribute set to
true (which is not the default).

If an otherwise migratable resource depends on another resource via an ordering
constraint, there are special situations in which it will be restarted rather
than migrated.

For example, if the resource depends on a clone, and at the time the resource
needs to be moved, the clone has instances that are stopping and instances that
are starting, then the resource will be restarted. The scheduler is not yet
able to model this situation correctly and so takes the safer (if less optimal)
path.

Also, if a migratable resource depends on a non-migratable resource, and both
need to be moved, the migratable resource will be restarted.

Footnotes

	1

	Currently, anyway. Automatic monitoring operations may be added in a future
version of Pacemaker.

	2

	The naming of this option was perhaps unfortunate as it is easily
confused with live migration, the process of moving a resource from one
node to another without stopping it. Xen virtual guests are the most
common example of resources that can be migrated in this manner.

7. Resource Constraints

7.1. Deciding Which Nodes a Resource Can Run On

Location constraints tell the cluster which nodes a resource can run on.

There are two alternative strategies. One way is to say that, by default,
resources can run anywhere, and then the location constraints specify nodes
that are not allowed (an opt-out cluster). The other way is to start with
nothing able to run anywhere, and use location constraints to selectively
enable allowed nodes (an opt-in cluster).

Whether you should choose opt-in or opt-out depends on your
personal preference and the make-up of your cluster. If most of your
resources can run on most of the nodes, then an opt-out arrangement is
likely to result in a simpler configuration. On the other-hand, if
most resources can only run on a small subset of nodes, an opt-in
configuration might be simpler.

7.1.1. Location Properties

Attributes of a rsc_location Element

	Name

	Type

	Default

	Description

	id

	id

	
	A unique name for the constraint (required)

	rsc

	id

	
	The name of the resource to which this constraint applies. A location
constraint must either have a rsc, have a rsc-pattern, or
contain at least one resource set.

	rsc-pattern

	text

	
	A pattern matching the names of resources to which this constraint
applies. The syntax is the same as POSIX [http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_04]
extended regular expressions, with the addition of an initial !
indicating that resources not matching the pattern are selected. If
the regular expression contains submatches, and the constraint contains
a rule, the submatches can be referenced as %1
through %9 in the rule’s score-attribute or a rule expression’s
attribute (see Specifying location scores using pattern submatches). A location constraint
must either have a rsc, have a rsc-pattern, or contain at least
one resource set.

	node

	text

	
	The name of the node to which this constraint applies. A location
constraint must either have a node and score, or contain at
least one rule.

	score

	score

	
	Positive values indicate a preference for running the affected
resource(s) on node – the higher the value, the stronger the
preference. Negative values indicate the resource(s) should avoid this
node (a value of -INFINITY changes “should” to “must”). A location
constraint must either have a node and score, or contain at
least one rule.

	role

	enumeration

	Started

	This is significant only for
promotable clones, is allowed only if
rsc or rsc-pattern is set, and is ignored if the constraint
contains a rule. Allowed values:

	Started or Unpromoted: The constraint affects the location of
all instances of the resource. (A promoted instance must start in the
unpromoted role before being promoted, so any location requirement for
unpromoted instances also affects promoted instances.)

	Promoted: The constraint does not affect the location of
instances, but instead affects which of the instances will be
promoted.

	resource-discovery

	enumeration

	always

	Whether Pacemaker should perform resource discovery (that is, check
whether the resource is already running) for this resource on this node.
This should normally be left as the default, so that rogue instances of
a service can be stopped when they are running where they are not
supposed to be. However, there are two situations where disabling
resource discovery is a good idea: when a service is not installed on a
node, discovery might return an error (properly written OCF agents will
not, so this is usually only seen with other agent types); and when
Pacemaker Remote is used to scale a cluster to hundreds of nodes,
limiting resource discovery to allowed nodes can significantly boost
performance. Allowed values:

	always: Always perform resource discovery for the specified
resource on this node.

	never: Never perform resource discovery for the specified resource
on this node. This option should generally be used with a -INFINITY
score, although that is not strictly required.

	exclusive: Perform resource discovery for the specified resource
only on this node (and other nodes similarly marked as exclusive).
Multiple location constraints using exclusive discovery for the
same resource across different nodes creates a subset of nodes
resource-discovery is exclusive to. If a resource is marked for
exclusive discovery on one or more nodes, that resource is only
allowed to be placed within that subset of nodes.

Warning

Setting resource-discovery to never or exclusive removes Pacemaker’s
ability to detect and stop unwanted instances of a service running
where it’s not supposed to be. It is up to the system administrator (you!)
to make sure that the service can never be active on nodes without
resource-discovery (such as by leaving the relevant software uninstalled).

7.1.2. Asymmetrical “Opt-In” Clusters

To create an opt-in cluster, start by preventing resources from running anywhere
by default:

crm_attribute --name symmetric-cluster --update false

Then start enabling nodes. The following fragment says that the web
server prefers sles-1, the database prefers sles-2 and both can
fail over to sles-3 if their most preferred node fails.

Opt-in location constraints for two resources

<constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
 <rsc_location id="loc-2" rsc="Webserver" node="sles-3" score="0"/>
 <rsc_location id="loc-3" rsc="Database" node="sles-2" score="200"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-3" score="0"/>
</constraints>

7.1.3. Symmetrical “Opt-Out” Clusters

To create an opt-out cluster, start by allowing resources to run
anywhere by default:

crm_attribute --name symmetric-cluster --update true

Then start disabling nodes. The following fragment is the equivalent
of the above opt-in configuration.

Opt-out location constraints for two resources

<constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
 <rsc_location id="loc-2-do-not-run" rsc="Webserver" node="sles-2" score="-INFINITY"/>
 <rsc_location id="loc-3-do-not-run" rsc="Database" node="sles-1" score="-INFINITY"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-2" score="200"/>
</constraints>

7.1.4. What if Two Nodes Have the Same Score

If two nodes have the same score, then the cluster will choose one.
This choice may seem random and may not be what was intended, however
the cluster was not given enough information to know any better.

Constraints where a resource prefers two nodes equally

<constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="INFINITY"/>
 <rsc_location id="loc-2" rsc="Webserver" node="sles-2" score="INFINITY"/>
 <rsc_location id="loc-3" rsc="Database" node="sles-1" score="500"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-2" score="300"/>
 <rsc_location id="loc-5" rsc="Database" node="sles-2" score="200"/>
</constraints>

In the example above, assuming no other constraints and an inactive
cluster, Webserver would probably be placed on sles-1 and Database on
sles-2. It would likely have placed Webserver based on the node’s
uname and Database based on the desire to spread the resource load
evenly across the cluster. However other factors can also be involved
in more complex configurations.

7.1.5. Specifying locations using pattern matching

A location constraint can affect all resources whose IDs match a given pattern.
The following example bans resources named ip-httpd, ip-asterisk,
ip-gateway, etc., from node1.

Location constraint banning all resources matching a pattern from one node

<constraints>
 <rsc_location id="ban-ips-from-node1" rsc-pattern="ip-.*" node="node1" score="-INFINITY"/>
</constraints>

7.2. Specifying the Order in which Resources Should Start/Stop

Ordering constraints tell the cluster the order in which certain
resource actions should occur.

Important

Ordering constraints affect only the ordering of resource actions;
they do not require that the resources be placed on the
same node. If you want resources to be started on the same node
and in a specific order, you need both an ordering constraint and
a colocation constraint (see Placing Resources Relative to other Resources), or
alternatively, a group (see Groups - A Syntactic Shortcut).

7.2.1. Ordering Properties

Attributes of a rsc_order Element

	Field

	Default

	Description

	id

	
	A unique name for the constraint

	first

	
	Name of the resource that the then resource
depends on

	then

	
	Name of the dependent resource

	first-action

	start

	The action that the first resource must complete
before then-action can be initiated for the then
resource. Allowed values: start, stop,
promote, demote.

	then-action

	value of first-action

	The action that the then resource can execute only
after the first-action on the first resource has
completed. Allowed values: start, stop,
promote, demote.

	kind

	Mandatory

	How to enforce the constraint. Allowed values:

	Mandatory: then-action will never be initiated
for the then resource unless and until first-action
successfully completes for the first resource.

	Optional: The constraint applies only if both specified
resource actions are scheduled in the same transition
(that is, in response to the same cluster state). This
means that then-action is allowed on the then
resource regardless of the state of the first resource,
but if both actions happen to be scheduled at the same time,
they will be ordered.

	Serialize: Ensure that the specified actions are never
performed concurrently for the specified resources.
First-action and then-action can be executed in either
order, but one must complete before the other can be initiated.
An example use case is when resource start-up puts a high load
on the host.

	symmetrical

	TRUE for Mandatory and
Optional kinds. FALSE
for Serialize kind.

	If true, the reverse of the constraint applies for the
opposite action (for example, if B starts after A starts,
then B stops before A stops). Serialize orders cannot
be symmetrical.

Promote and demote apply to promotable
clone resources.

7.2.2. Optional and mandatory ordering

Here is an example of ordering constraints where Database must start before
Webserver, and IP should start before Webserver if they both need to be
started:

Optional and mandatory ordering constraints

<constraints>
 <rsc_order id="order-1" first="IP" then="Webserver" kind="Optional"/>
 <rsc_order id="order-2" first="Database" then="Webserver" kind="Mandatory" />
</constraints>

Because the above example lets symmetrical default to TRUE, Webserver
must be stopped before Database can be stopped, and Webserver should be
stopped before IP if they both need to be stopped.

7.2.3. Symmetric and asymmetric ordering

A mandatory symmetric ordering of “start A then start B” implies not only that
the start actions must be ordered, but that B is not allowed to be active
unless A is active. For example, if the ordering is added to the configuration
when A is stopped (due to target-role, failure, etc.) and B is already active,
then B will be stopped.

By contrast, asymmetric ordering of “start A then start B” means the stops can
occur in either order, which implies that B can remain active in the same
situation.

7.3. Placing Resources Relative to other Resources

Colocation constraints tell the cluster that the location of one resource
depends on the location of another one.

Colocation has an important side-effect: it affects the order in which
resources are assigned to a node. Think about it: You can’t place A relative to
B unless you know where B is 1.

So when you are creating colocation constraints, it is important to
consider whether you should colocate A with B, or B with A.

Important

Colocation constraints affect only the placement of resources; they do not
require that the resources be started in a particular order. If you want
resources to be started on the same node and in a specific order, you need
both an ordering constraint (see Specifying the Order in which Resources Should Start/Stop) and a colocation
constraint, or alternatively, a group (see Groups - A Syntactic Shortcut).

7.3.1. Colocation Properties

Attributes of a rsc_colocation Constraint

	Field

	Default

	Description

	id

	
	A unique name for the constraint (required).

	rsc

	
	The name of a resource that should be located
relative to with-rsc. A colocation constraint must
either contain at least one
resource set, or specify both
rsc and with-rsc.

	with-rsc

	
	The name of the resource used as the colocation
target. The cluster will decide where to put this
resource first and then decide where to put rsc.
A colocation constraint must either contain at least
one resource set, or specify
both rsc and with-rsc.

	node-attribute

	#uname

	If rsc and with-rsc are specified, this node
attribute must be the same on the node running rsc
and the node running with-rsc for the constraint
to be satisfied. (For details, see
Colocation by Node Attribute.)

	score

	0

	Positive values indicate the resources should run on
the same node. Negative values indicate the resources
should run on different nodes. Values of
+/- INFINITY change “should” to “must”.

	rsc-role

	Started

	If rsc and with-rsc are specified, and rsc
is a promotable clone,
the constraint applies only to rsc instances in
this role. Allowed values: Started, Stopped,
Promoted, Unpromoted. For details, see
Promotable Clone Constraints.

	with-rsc-role

	Started

	If rsc and with-rsc are specified, and
with-rsc is a
promotable clone, the
constraint applies only to with-rsc instances in
this role. Allowed values: Started, Stopped,
Promoted, Unpromoted. For details, see
Promotable Clone Constraints.

	influence

	value of
critical
meta-attribute
for rsc

	Whether to consider the location preferences of
rsc when with-rsc is already active. Allowed
values: true, false. For details, see
Colocation Influence. (since 2.1.0)

7.3.2. Mandatory Placement

Mandatory placement occurs when the constraint’s score is
+INFINITY or -INFINITY. In such cases, if the constraint can’t be
satisfied, then the rsc resource is not permitted to run. For
score=INFINITY, this includes cases where the with-rsc resource is
not active.

If you need resource A to always run on the same machine as
resource B, you would add the following constraint:

Mandatory colocation constraint for two resources

<rsc_colocation id="colocate" rsc="A" with-rsc="B" score="INFINITY"/>

Remember, because INFINITY was used, if B can’t run on any
of the cluster nodes (for whatever reason) then A will not
be allowed to run. Whether A is running or not has no effect on B.

Alternatively, you may want the opposite – that A cannot
run on the same machine as B. In this case, use score="-INFINITY".

Mandatory anti-colocation constraint for two resources

<rsc_colocation id="anti-colocate" rsc="A" with-rsc="B" score="-INFINITY"/>

Again, by specifying -INFINITY, the constraint is binding. So if the
only place left to run is where B already is, then A may not run anywhere.

As with INFINITY, B can run even if A is stopped. However, in this
case A also can run if B is stopped, because it still meets the
constraint of A and B not running on the same node.

7.3.3. Advisory Placement

If mandatory placement is about “must” and “must not”, then advisory
placement is the “I’d prefer if” alternative.

For colocation constraints with scores greater than -INFINITY and less than
INFINITY, the cluster will try to accommodate your wishes, but may ignore
them if other factors outweigh the colocation score. Those factors might
include other constraints, resource stickiness, failure thresholds, whether
other resources would be prevented from being active, etc.

Advisory colocation constraint for two resources

<rsc_colocation id="colocate-maybe" rsc="A" with-rsc="B" score="500"/>

7.3.4. Colocation by Node Attribute

The node-attribute property of a colocation constraints allows you to express
the requirement, “these resources must be on similar nodes”.

As an example, imagine that you have two Storage Area Networks (SANs) that are
not controlled by the cluster, and each node is connected to one or the other.
You may have two resources r1 and r2 such that r2 needs to use the same
SAN as r1, but doesn’t necessarily have to be on the same exact node.
In such a case, you could define a node attribute named
san, with the value san1 or san2 on each node as appropriate. Then, you
could colocate r2 with r1 using node-attribute set to san.

7.3.5. Colocation Influence

By default, if A is colocated with B, the cluster will take into account A’s
preferences when deciding where to place B, to maximize the chance that both
resources can run.

For a detailed look at exactly how this occurs, see
Colocation Explained [http://clusterlabs.org/doc/Colocation_Explained.pdf].

However, if influence is set to false in the colocation constraint,
this will happen only if B is inactive and needing to be started. If B is
already active, A’s preferences will have no effect on placing B.

An example of what effect this would have and when it would be desirable would
be a nonessential reporting tool colocated with a resource-intensive service
that takes a long time to start. If the reporting tool fails enough times to
reach its migration threshold, by default the cluster will want to move both
resources to another node if possible. Setting influence to false on
the colocation constraint would mean that the reporting tool would be stopped
in this situation instead, to avoid forcing the service to move.

The critical resource meta-attribute is a convenient way to specify the
default for all colocation constraints and groups involving a particular
resource.

Note

If a noncritical resource is a member of a group, all later members of the
group will be treated as noncritical, even if they are marked as (or left to
default to) critical.

7.4. Resource Sets

Resource sets allow multiple resources to be affected by a single constraint.

A set of 3 resources

<resource_set id="resource-set-example">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
</resource_set>

Resource sets are valid inside rsc_location, rsc_order
(see Ordering Sets of Resources), rsc_colocation
(see Colocating Sets of Resources), and rsc_ticket
(see Configuring Ticket Dependencies) constraints.

A resource set has a number of properties that can be set, though not all
have an effect in all contexts.

Attributes of a resource_set Element

	Field

	Default

	Description

	id

	
	A unique name for the set (required)

	sequential

	true

	Whether the members of the set must be acted on in
order. Meaningful within rsc_order and
rsc_colocation.

	require-all

	true

	Whether all members of the set must be active before
continuing. With the current implementation, the
cluster may continue even if only one member of the
set is started, but if more than one member of the set
is starting at the same time, the cluster will still
wait until all of those have started before continuing
(this may change in future versions). Meaningful
within rsc_order.

	role

	
	The constraint applies only to resource set members
that are Promotable clones in this
role. Meaningful within rsc_location,
rsc_colocation and rsc_ticket.
Allowed values: Started, Promoted,
Unpromoted. For details, see
Promotable Clone Constraints.

	action

	start

	The action that applies to all members of the set.
Meaningful within rsc_order. Allowed values:
start, stop, promote, demote.

	score

	
	Advanced use only. Use a specific score for this
set. Meaningful within rsc_location or
rsc_colocation.

	kind

	
	Advanced use only. Use a specific kind for this
set. Meaningful within rsc_order.

7.4.1. Anti-colocation Chains

Sometimes, you would like a set of resources to be anti-colocated with each
other. For example, resource1, resource2, and resource3 must all
run on different nodes.

A straightforward approach would be to configure either separate colocations or
a resource set, with -INFINITY scores between all the resources.

However, this will not work as expected.

Resource sets may in the future gain new syntax for this specific situation,
but for now, a workaround is to use utilization instead of
colocations to keep the resources apart. Create a utilization attribute for the
anti-colocation, assign the same value to each resource, and give each node the
capacity to run one resource.

7.5. Ordering Sets of Resources

A common situation is for an administrator to create a chain of ordered
resources, such as:

A chain of ordered resources

<constraints>
 <rsc_order id="order-1" first="A" then="B" />
 <rsc_order id="order-2" first="B" then="C" />
 <rsc_order id="order-3" first="C" then="D" />
</constraints>

Visual representation of the four resources’ start order for the above constraints

[image: Ordered set]

7.5.1. Ordered Set

To simplify this situation, Resource Sets can be used within ordering
constraints:

A chain of ordered resources expressed as a set

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-example" sequential="true">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
</constraints>

While the set-based format is not less verbose, it is significantly easier to
get right and maintain.

Important

If you use a higher-level tool, pay attention to how it exposes this
functionality. Depending on the tool, creating a set A B may be equivalent to
A then B, or B then A.

7.5.2. Ordering Multiple Sets

The syntax can be expanded to allow sets of resources to be ordered relative to
each other, where the members of each individual set may be ordered or
unordered (controlled by the sequential property). In the example below, A
and B can both start in parallel, as can C and D, however C and
D can only start once both A and B are active.

Ordered sets of unordered resources

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="false">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
</constraints>

Visual representation of the start order for two ordered sets of
 unordered resources

[image: Two ordered sets]

Of course either set – or both sets – of resources can also be internally
ordered (by setting sequential="true") and there is no limit to the number
of sets that can be specified.

Advanced use of set ordering - Three ordered sets, two of which are
 internally unordered

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="true">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 <resource_set id="ordered-set-3" sequential="false">
 <resource_ref id="E"/>
 <resource_ref id="F"/>
 </resource_set>
 </rsc_order>
</constraints>

Visual representation of the start order for the three sets defined above

[image: Three ordered sets]

Important

An ordered set with sequential=false makes sense only if there is another
set in the constraint. Otherwise, the constraint has no effect.

7.5.3. Resource Set OR Logic

The unordered set logic discussed so far has all been “AND” logic. To illustrate
this take the 3 resource set figure in the previous section. Those sets can be
expressed, (A and B) then (C) then (D) then (E and F).

Say for example we want to change the first set, (A and B), to use “OR” logic
so the sets look like this: (A or B) then (C) then (D) then (E and F). This
functionality can be achieved through the use of the require-all option.
This option defaults to TRUE which is why the “AND” logic is used by default.
Setting require-all=false means only one resource in the set needs to be
started before continuing on to the next set.

Resource Set “OR” logic: Three ordered sets, where the first set is
 internally unordered with “OR” logic

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false" require-all="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="true">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 <resource_set id="ordered-set-3" sequential="false">
 <resource_ref id="E"/>
 <resource_ref id="F"/>
 </resource_set>
 </rsc_order>
</constraints>

Important

An ordered set with require-all=false makes sense only in conjunction with
sequential=false. Think of it like this: sequential=false modifies the set
to be an unordered set using “AND” logic by default, and adding
require-all=false flips the unordered set’s “AND” logic to “OR” logic.

7.6. Colocating Sets of Resources

Another common situation is for an administrator to create a set of
colocated resources.

The simplest way to do this is to define a resource group (see
Groups - A Syntactic Shortcut), but that cannot always accurately express the desired
relationships. For example, maybe the resources do not need to be ordered.

Another way would be to define each relationship as an individual constraint,
but that causes a difficult-to-follow constraint explosion as the number of
resources and combinations grow.

Colocation chain as individual constraints, where A is placed first,
 then B, then C, then D

<constraints>
 <rsc_colocation id="coloc-1" rsc="D" with-rsc="C" score="INFINITY"/>
 <rsc_colocation id="coloc-2" rsc="C" with-rsc="B" score="INFINITY"/>
 <rsc_colocation id="coloc-3" rsc="B" with-rsc="A" score="INFINITY"/>
</constraints>

To express complicated relationships with a simplified syntax 2,
resource sets can be used within colocation constraints.

Equivalent colocation chain expressed using resource_set

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="colocated-set-example" sequential="true">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_colocation>
</constraints>

Note

Within a resource_set, the resources are listed in the order they are
placed, which is the reverse of the order in which they are colocated.
In the above example, resource A is placed before resource B, which is
the same as saying resource B is colocated with resource A.

As with individual constraints, a resource that can’t be active prevents any
resource that must be colocated with it from being active. In both of the two
previous examples, if B is unable to run, then both C and by inference D
must remain stopped.

Important

If you use a higher-level tool, pay attention to how it exposes this
functionality. Depending on the tool, creating a set A B may be equivalent to
A with B, or B with A.

Resource sets can also be used to tell the cluster that entire sets of
resources must be colocated relative to each other, while the individual
members within any one set may or may not be colocated relative to each other
(determined by the set’s sequential property).

In the following example, resources B, C, and D will each be colocated
with A (which will be placed first). A must be able to run in order for any
of the resources to run, but any of B, C, or D may be stopped without
affecting any of the others.

Using colocated sets to specify a shared dependency

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="colocated-set-2" sequential="false">
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 <resource_set id="colocated-set-1" sequential="true">
 <resource_ref id="A"/>
 </resource_set>
 </rsc_colocation>
</constraints>

Note

Pay close attention to the order in which resources and sets are listed.
While the members of any one sequential set are placed first to last (i.e., the
colocation dependency is last with first), multiple sets are placed last to
first (i.e. the colocation dependency is first with last).

Important

A colocated set with sequential="false" makes sense only if there is
another set in the constraint. Otherwise, the constraint has no effect.

There is no inherent limit to the number and size of the sets used.
The only thing that matters is that in order for any member of one set
in the constraint to be active, all members of sets listed after it must also
be active (and naturally on the same node); and if a set has sequential="true",
then in order for one member of that set to be active, all members listed
before it must also be active.

If desired, you can restrict the dependency to instances of promotable clone
resources that are in a specific role, using the set’s role property.

Colocation in which the members of the middle set have no
 interdependencies, and the last set listed applies only to promoted
 instances

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="colocated-set-1" sequential="true">
 <resource_ref id="F"/>
 <resource_ref id="G"/>
 </resource_set>
 <resource_set id="colocated-set-2" sequential="false">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 <resource_ref id="E"/>
 </resource_set>
 <resource_set id="colocated-set-3" sequential="true" role="Promoted">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 </rsc_colocation>
</constraints>

Visual representation of the above example (resources are placed from
 left to right)

[image: Colocation chain]

Note

Unlike ordered sets, colocated sets do not use the require-all option.

7.7. External Resource Dependencies

Sometimes, a resource will depend on services that are not managed by the
cluster. An example might be a resource that requires a file system that is
not managed by the cluster but mounted by systemd at boot time.

To accommodate this, the pacemaker systemd service depends on a normally empty
target called resource-agents-deps.target. The system administrator may
create a unit drop-in for that target specifying the dependencies, to ensure
that the services are started before Pacemaker starts and stopped after
Pacemaker stops.

Typically, this is accomplished by placing a unit file in the
/etc/systemd/system/resource-agents-deps.target.d directory, with directives
such as Requires and After specifying the dependencies as needed.

	1

	While the human brain is sophisticated enough to read the constraint
in any order and choose the correct one depending on the situation,
the cluster is not quite so smart. Yet.

	2

	which is not the same as saying easy to follow

8. Fencing

8.1. What Is Fencing?

Fencing is the ability to make a node unable to run resources, even when that
node is unresponsive to cluster commands.

Fencing is also known as STONITH, an acronym for “Shoot The Other Node In The
Head”, since the most common fencing method is cutting power to the node.
Another method is “fabric fencing”, cutting the node’s access to some
capability required to run resources (such as network access or a shared disk).

8.2. Why Is Fencing Necessary?

Fencing protects your data from being corrupted by malfunctioning nodes or
unintentional concurrent access to shared resources.

Fencing protects against the “split brain” failure scenario, where cluster
nodes have lost the ability to reliably communicate with each other but are
still able to run resources. If the cluster just assumed that uncommunicative
nodes were down, then multiple instances of a resource could be started on
different nodes.

The effect of split brain depends on the resource type. For example, an IP
address brought up on two hosts on a network will cause packets to randomly be
sent to one or the other host, rendering the IP useless. For a database or
clustered file system, the effect could be much more severe, causing data
corruption or divergence.

Fencing is also used when a resource cannot otherwise be stopped. If a
resource fails to stop on a node, it cannot be started on a different node
without risking the same type of conflict as split-brain. Fencing the
original node ensures the resource can be safely started elsewhere.

Users may also configure the on-fail property of Resource Operations or the
loss-policy property of
ticket constraints to fence, in which
case the cluster will fence the resource’s node if the operation fails or the
ticket is lost.

8.3. Fence Devices

A fence device or fencing device is a special type of resource that
provides the means to fence a node.

Examples of fencing devices include intelligent power switches and IPMI devices
that accept SNMP commands to cut power to a node, and iSCSI controllers that
allow SCSI reservations to be used to cut a node’s access to a shared disk.

Since fencing devices will be used to recover from loss of networking
connectivity to other nodes, it is essential that they do not rely on the same
network as the cluster itself, otherwise that network becomes a single point of
failure.

Since loss of a node due to power outage is indistinguishable from loss of
network connectivity to that node, it is also essential that at least one fence
device for a node does not share power with that node. For example, an on-board
IPMI controller that shares power with its host should not be used as the sole
fencing device for that host.

Since fencing is used to isolate malfunctioning nodes, no fence device should
rely on its target functioning properly. This includes, for example, devices
that ssh into a node and issue a shutdown command (such devices might be
suitable for testing, but never for production).

8.4. Fence Agents

A fence agent or fencing agent is a stonith-class resource agent.

The fence agent standard provides commands (such as off and reboot)
that the cluster can use to fence nodes. As with other resource agent classes,
this allows a layer of abstraction so that Pacemaker doesn’t need any knowledge
about specific fencing technologies – that knowledge is isolated in the agent.

Pacemaker supports two fence agent standards, both inherited from
no-longer-active projects:

	Red Hat Cluster Suite (RHCS) style: These are typically installed in
/usr/sbin with names starting with fence_.

	Linux-HA style: These typically have names starting with external/.
Pacemaker can support these agents using the fence_legacy RHCS-style
agent as a wrapper, if support was enabled when Pacemaker was built, which
requires the cluster-glue library.

8.5. When a Fence Device Can Be Used

Fencing devices do not actually “run” like most services. Typically, they just
provide an interface for sending commands to an external device.

Additionally, fencing may be initiated by Pacemaker, by other cluster-aware
software such as DRBD or DLM, or manually by an administrator, at any point in
the cluster life cycle, including before any resources have been started.

To accommodate this, Pacemaker does not require the fence device resource to be
“started” in order to be used. Whether a fence device is started or not
determines whether a node runs any recurring monitor for the device, and gives
the node a slight preference for being chosen to execute fencing using that
device.

By default, any node can execute any fencing device. If a fence device is
disabled by setting its target-role to Stopped, then no node can use
that device. If a location constraint with a negative score prevents a specific
node from “running” a fence device, then that node will never be chosen to
execute fencing using the device. A node may fence itself, but the cluster will
choose that only if no other nodes can do the fencing.

A common configuration scenario is to have one fence device per target node.
In such a case, users often configure anti-location constraints so that
the target node does not monitor its own device.

8.6. Limitations of Fencing Resources

Fencing resources have certain limitations that other resource classes don’t:

	They may have only one set of meta-attributes and one set of instance
attributes.

	If Rules are used to determine fencing resource options, these
might be evaluated only when first read, meaning that later changes to the
rules will have no effect. Therefore, it is better to avoid confusion and not
use rules at all with fencing resources.

These limitations could be revisited if there is sufficient user demand.

8.7. Special Meta-Attributes for Fencing Resources

The table below lists special resource meta-attributes that may be set for any
fencing resource.

Additional Properties of Fencing Resources

	Field

	Type

	Default

	Description

	provides

	string

	
	Any special capability provided by the
fence device. Currently, only one such
capability is meaningful:
unfencing.

8.8. Special Instance Attributes for Fencing Resources

The table below lists special instance attributes that may be set for any
fencing resource (not meta-attributes, even though they are interpreted by
Pacemaker rather than the fence agent). These are also listed in the man page
for pacemaker-fenced.

Additional Properties of Fencing Resources

	Name

	Type

	Default

	Description

	stonith-timeout

	timeout

	
	This is not used by Pacemaker (see the pcmk_reboot_timeout,
pcmk_off_timeout, etc., properties instead), but it may be used by
Linux-HA fence agents.

	pcmk_host_map

	text

	
	A mapping of node names to ports for devices that do not understand the
node names. For example, node1:1;node2:2,3 tells the cluster to use
port 1 for node1 and ports 2 and 3 for node2. If
pcmk_host_check is explicitly set to static-list, either this or
pcmk_host_list must be set. The port portion of the map may contain
special characters such as spaces if preceded by a backslash (since 2.1.2).

	pcmk_host_list

	text

	
	Comma-separated list of nodes that can be targeted by this device (for
example, node1,node2,node3). If pcmk_host_check is static-list,
either this or pcmk_host_map must be set.

	pcmk_host_check

	text

	See Default Check Type

	The method Pacemaker should use to determine which nodes can be targeted
by this device. Allowed values:

	static-list: targets are listed in the pcmk_host_list or pcmk_host_map attribute

	dynamic-list: query the device via the agent’s list action

	status: query the device via the agent’s status action

	none: assume the device can fence any node

	pcmk_delay_max

	duration

	0s

	Enable a delay of no more than the time specified before executing
fencing actions. Pacemaker derives the overall delay by taking the value
of pcmk_delay_base and adding a random delay value such that the sum is
kept below this maximum. This is sometimes used in two-node clusters to
ensure that the nodes don’t fence each other at the same time.

	pcmk_delay_base

	text

	0s

	Enable a static delay before executing fencing actions. This can be
used, for example, in two-node clusters to ensure that the nodes don’t
fence each other, by having separate fencing resources with different
values. The node that is fenced with the shorter delay will lose a
fencing race. The overall delay introduced by pacemaker is derived from
this value plus a random delay such that the sum is kept below the
maximum delay. A single device can have different delays per node using
a host map (since 2.1.2), for example node1:0s;node2:5s.

	pcmk_action_limit

	integer

	1

	The maximum number of actions that can be performed in parallel on this
device. A value of -1 means unlimited. Node fencing actions initiated by
the cluster (as opposed to an administrator running the
stonith_admin tool or the fencer running recurring device monitors
and status and list commands) are additionally subject to the
concurrent-fencing cluster property.

	pcmk_host_argument

	text

	port if the fence agent metadata advertises support for it,
otherwise plug if supported, otherwise none

	Advanced use only. Which parameter should be supplied to the fence
agent to identify the node to be fenced. A value of none tells the
cluster not to supply any additional parameters.

	pcmk_reboot_action

	text

	reboot

	Advanced use only. The command to send to the resource agent in order
to reboot a node. Some devices do not support the standard commands or
may provide additional ones. Use this to specify an alternate,
device-specific command.

	pcmk_reboot_timeout

	timeout

	60s

	Advanced use only. Specify an alternate timeout (in seconds) to use
for reboot actions instead of the value of stonith-timeout. Some
devices need much more or less time to complete than normal. Use this to
specify an alternate, device-specific timeout.

	pcmk_reboot_retries

	integer

	2

	Advanced use only. The maximum number of times to retry the reboot
command within the timeout period. Some devices do not support multiple
connections, and operations may fail if the device is busy with another
task, so Pacemaker will automatically retry the operation, if there is
time remaining. Use this option to alter the number of times Pacemaker
retries before giving up.

	pcmk_off_action

	text

	off

	Advanced use only. The command to send to the resource agent in order
to shut down a node. Some devices do not support the standard commands or
may provide additional ones. Use this to specify an alternate,
device-specific command.

	pcmk_off_timeout

	timeout

	60s

	Advanced use only. Specify an alternate timeout (in seconds) to use
for off actions instead of the value of stonith-timeout. Some
devices need much more or less time to complete than normal. Use this to
specify an alternate, device-specific timeout.

	pcmk_off_retries

	integer

	2

	Advanced use only. The maximum number of times to retry the off
command within the timeout period. Some devices do not support multiple
connections, and operations may fail if the device is busy with another
task, so Pacemaker will automatically retry the operation, if there is
time remaining. Use this option to alter the number of times Pacemaker
retries before giving up.

	pcmk_list_action

	text

	list

	Advanced use only. The command to send to the resource agent in order
to list nodes. Some devices do not support the standard commands or may
provide additional ones. Use this to specify an alternate,
device-specific command.

	pcmk_list_timeout

	timeout

	60s

	Advanced use only. Specify an alternate timeout (in seconds) to use
for list actions instead of the value of stonith-timeout. Some
devices need much more or less time to complete than normal. Use this to
specify an alternate, device-specific timeout.

	pcmk_list_retries

	integer

	2

	Advanced use only. The maximum number of times to retry the list
command within the timeout period. Some devices do not support multiple
connections, and operations may fail if the device is busy with another
task, so Pacemaker will automatically retry the operation, if there is
time remaining. Use this option to alter the number of times Pacemaker
retries before giving up.

	pcmk_monitor_action

	text

	monitor

	Advanced use only. The command to send to the resource agent in order
to report extended status. Some devices do not support the standard
commands or may provide additional ones. Use this to specify an
alternate, device-specific command.

	pcmk_monitor_timeout

	timeout

	60s

	Advanced use only. Specify an alternate timeout (in seconds) to use
for monitor actions instead of the value of stonith-timeout. Some
devices need much more or less time to complete than normal. Use this to
specify an alternate, device-specific timeout.

	pcmk_monitor_retries

	integer

	2

	Advanced use only. The maximum number of times to retry the monitor
command within the timeout period. Some devices do not support multiple
connections, and operations may fail if the device is busy with another
task, so Pacemaker will automatically retry the operation, if there is
time remaining. Use this option to alter the number of times Pacemaker
retries before giving up.

	pcmk_status_action

	text

	status

	Advanced use only. The command to send to the resource agent in order
to report status. Some devices do not support the standard commands or
may provide additional ones. Use this to specify an alternate,
device-specific command.

	pcmk_status_timeout

	timeout

	60s

	Advanced use only. Specify an alternate timeout (in seconds) to use
for status actions instead of the value of stonith-timeout. Some
devices need much more or less time to complete than normal. Use this to
specify an alternate, device-specific timeout.

	pcmk_status_retries

	integer

	2

	Advanced use only. The maximum number of times to retry the status
command within the timeout period. Some devices do not support multiple
connections, and operations may fail if the device is busy with another
task, so Pacemaker will automatically retry the operation, if there is
time remaining. Use this option to alter the number of times Pacemaker
retries before giving up.

8.9. Default Check Type

If the user does not explicitly configure pcmk_host_check for a fence
device, a default value appropriate to other configured parameters will be
used:

	If either pcmk_host_list or pcmk_host_map is configured,
static-list will be used;

	otherwise, if the fence device supports the list action, and the first
attempt at using list succeeds, dynamic-list will be used;

	otherwise, if the fence device supports the status action, status
will be used;

	otherwise, none will be used.

8.10. Unfencing

With fabric fencing (such as cutting network or shared disk access rather than
power), it is expected that the cluster will fence the node, and then a system
administrator must manually investigate what went wrong, correct any issues
found, then reboot (or restart the cluster services on) the node.

Once the node reboots and rejoins the cluster, some fabric fencing devices
require an explicit command to restore the node’s access. This capability is
called unfencing and is typically implemented as the fence agent’s on
command.

If any cluster resource has requires set to unfencing, then that
resource will not be probed or started on a node until that node has been
unfenced.

8.11. Fencing and Quorum

In general, a cluster partition may execute fencing only if the partition has
quorum, and the stonith-enabled cluster property is set to true. However,
there are exceptions:

	The requirements apply only to fencing initiated by Pacemaker. If an
administrator initiates fencing using the stonith_admin command, or an
external application such as DLM initiates fencing using Pacemaker’s C API,
the requirements do not apply.

	A cluster partition without quorum is allowed to fence any active member of
that partition. As a corollary, this allows a no-quorum-policy of
suicide to work.

	If the no-quorum-policy cluster property is set to ignore, then
quorum is not required to execute fencing of any node.

8.12. Fencing Timeouts

Fencing timeouts are complicated, since a single fencing operation can involve
many steps, each of which may have a separate timeout.

Fencing may be initiated in one of several ways:

	An administrator may initiate fencing using the stonith_admin tool,
which has a --timeout option (defaulting to 2 minutes) that will be used
as the fence operation timeout.

	An external application such as DLM may initiate fencing using the Pacemaker
C API. The application will specify the fence operation timeout in this case,
which might or might not be configurable by the user.

	The cluster may initiate fencing itself. In this case, the
stonith-timeout cluster property (defaulting to 1 minute) will be used as
the fence operation timeout.

However fencing is initiated, the initiator contacts Pacemaker’s fencer
(pacemaker-fenced) to request fencing. This connection and request has its
own timeout, separate from the fencing operation timeout, but usually happens
very quickly.

The fencer will contact all fencers in the cluster to ask what devices they
have available to fence the target node. The fence operation timeout will be
used as the timeout for each of these queries.

Once a fencing device has been selected, the fencer will check whether any
action-specific timeout has been configured for the device, to use instead of
the fence operation timeout. For example, if stonith-timeout is 60 seconds,
but the fencing device has pcmk_reboot_timeout configured as 90 seconds,
then a timeout of 90 seconds will be used for reboot actions using that device.

A device may have retries configured, in which case the timeout applies across
all attempts. For example, if a device has pcmk_reboot_retries configured
as 2, and the first reboot attempt fails, the second attempt will only have
whatever time is remaining in the action timeout after subtracting how much
time the first attempt used. This means that if the first attempt fails due to
using the entire timeout, no further attempts will be made. There is currently
no way to configure a per-attempt timeout.

If more than one device is required to fence a target, whether due to failure
of the first device or a fencing topology with multiple devices configured for
the target, each device will have its own separate action timeout.

For all of the above timeouts, the fencer will generally multiply the
configured value by 1.2 to get an actual value to use, to account for time
needed by the fencer’s own processing.

Separate from the fencer’s timeouts, some fence agents have internal timeouts
for individual steps of their fencing process. These agents often have
parameters to configure these timeouts, such as login-timeout,
shell-timeout, or power-timeout. Many such agents also have a
disable-timeout parameter to ignore their internal timeouts and just let
Pacemaker handle the timeout. This causes a difference in retry behavior.
If disable-timeout is not set, and the agent hits one of its internal
timeouts, it will report that as a failure to Pacemaker, which can then retry.
If disable-timeout is set, and Pacemaker hits a timeout for the agent, then
there will be no time remaining, and no retry will be done.

8.13. Fence Devices Dependent on Other Resources

In some cases, a fence device may require some other cluster resource (such as
an IP address) to be active in order to function properly.

This is obviously undesirable in general: fencing may be required when the
depended-on resource is not active, or fencing may be required because the node
running the depended-on resource is no longer responding.

However, this may be acceptable under certain conditions:

	The dependent fence device should not be able to target any node that is
allowed to run the depended-on resource.

	The depended-on resource should not be disabled during production operation.

	The concurrent-fencing cluster property should be set to true.
Otherwise, if both the node running the depended-on resource and some node
targeted by the dependent fence device need to be fenced, the fencing of the
node running the depended-on resource might be ordered first, making the
second fencing impossible and blocking further recovery. With concurrent
fencing, the dependent fence device might fail at first due to the
depended-on resource being unavailable, but it will be retried and eventually
succeed once the resource is brought back up.

Even under those conditions, there is one unlikely problem scenario. The DC
always schedules fencing of itself after any other fencing needed, to avoid
unnecessary repeated DC elections. If the dependent fence device targets the
DC, and both the DC and a different node running the depended-on resource need
to be fenced, the DC fencing will always fail and block further recovery. Note,
however, that losing a DC node entirely causes some other node to become DC and
schedule the fencing, so this is only a risk when a stop or other operation
with on-fail set to fencing fails on the DC.

8.14. Configuring Fencing

Higher-level tools can provide simpler interfaces to this process, but using
Pacemaker command-line tools, this is how you could configure a fence device.

	Find the correct driver:

stonith_admin --list-installed

Note

You may have to install packages to make fence agents available on your
host. Searching your available packages for fence- is usually
helpful. Ensure the packages providing the fence agents you require are
installed on every cluster node.

	Find the required parameters associated with the device
(replacing $AGENT_NAME with the name obtained from the previous step):

stonith_admin --metadata --agent $AGENT_NAME

	Create a file called stonith.xml containing a primitive resource
with a class of stonith, a type equal to the agent name obtained earlier,
and a parameter for each of the values returned in the previous step.

	If the device does not know how to fence nodes based on their uname,
you may also need to set the special pcmk_host_map parameter. See
Special Instance Attributes for Fencing Resources for details.

	If the device does not support the list command, you may also need
to set the special pcmk_host_list and/or pcmk_host_check
parameters. See Special Instance Attributes for Fencing Resources for details.

	If the device does not expect the target to be specified with the
port parameter, you may also need to set the special
pcmk_host_argument parameter. See Special Instance Attributes for Fencing Resources for details.

	Upload it into the CIB using cibadmin:

cibadmin --create --scope resources --xml-file stonith.xml

	Set stonith-enabled to true:

crm_attribute --type crm_config --name stonith-enabled --update true

	Once the stonith resource is running, you can test it by executing the
following, replacing $NODE_NAME with the name of the node to fence
(although you might want to stop the cluster on that machine first):

stonith_admin --reboot $NODE_NAME

8.14.1. Example Fencing Configuration

For this example, we assume we have a cluster node, pcmk-1, whose IPMI
controller is reachable at the IP address 192.0.2.1. The IPMI controller uses
the username testuser and the password abc123.

	Looking at what’s installed, we may see a variety of available agents:

stonith_admin --list-installed

(... some output omitted ...)
fence_idrac
fence_ilo3
fence_ilo4
fence_ilo5
fence_imm
fence_ipmilan
(... some output omitted ...)

Perhaps after some reading some man pages and doing some Internet searches,
we might decide fence_ipmilan is our best choice.

	Next, we would check what parameters fence_ipmilan provides:

stonith_admin --metadata -a fence_ipmilan

<resource-agent name="fence_ipmilan" shortdesc="Fence agent for IPMI">
 <symlink name="fence_ilo3" shortdesc="Fence agent for HP iLO3"/>
 <symlink name="fence_ilo4" shortdesc="Fence agent for HP iLO4"/>
 <symlink name="fence_ilo5" shortdesc="Fence agent for HP iLO5"/>
 <symlink name="fence_imm" shortdesc="Fence agent for IBM Integrated Management Module"/>
 <symlink name="fence_idrac" shortdesc="Fence agent for Dell iDRAC"/>
 <longdesc>fence_ipmilan is an I/O Fencing agentwhich can be used with machines controlled by IPMI.This agent calls support software ipmitool (http://ipmitool.sf.net/). WARNING! This fence agent might report success before the node is powered off. You should use -m/method onoff if your fence device works correctly with that option.</longdesc>
 <vendor-url/>
 <parameters>
 <parameter name="action" unique="0" required="0">
 <getopt mixed="-o, --action=[action]"/>
 <content type="string" default="reboot"/>
 <shortdesc lang="en">Fencing action</shortdesc>
 </parameter>
 <parameter name="auth" unique="0" required="0">
 <getopt mixed="-A, --auth=[auth]"/>
 <content type="select">
 <option value="md5"/>
 <option value="password"/>
 <option value="none"/>
 </content>
 <shortdesc lang="en">IPMI Lan Auth type.</shortdesc>
 </parameter>
 <parameter name="cipher" unique="0" required="0">
 <getopt mixed="-C, --cipher=[cipher]"/>
 <content type="string"/>
 <shortdesc lang="en">Ciphersuite to use (same as ipmitool -C parameter)</shortdesc>
 </parameter>
 <parameter name="hexadecimal_kg" unique="0" required="0">
 <getopt mixed="--hexadecimal-kg=[key]"/>
 <content type="string"/>
 <shortdesc lang="en">Hexadecimal-encoded Kg key for IPMIv2 authentication</shortdesc>
 </parameter>
 <parameter name="ip" unique="0" required="0" obsoletes="ipaddr">
 <getopt mixed="-a, --ip=[ip]"/>
 <content type="string"/>
 <shortdesc lang="en">IP address or hostname of fencing device</shortdesc>
 </parameter>
 <parameter name="ipaddr" unique="0" required="0" deprecated="1">
 <getopt mixed="-a, --ip=[ip]"/>
 <content type="string"/>
 <shortdesc lang="en">IP address or hostname of fencing device</shortdesc>
 </parameter>
 <parameter name="ipport" unique="0" required="0">
 <getopt mixed="-u, --ipport=[port]"/>
 <content type="integer" default="623"/>
 <shortdesc lang="en">TCP/UDP port to use for connection with device</shortdesc>
 </parameter>
 <parameter name="lanplus" unique="0" required="0">
 <getopt mixed="-P, --lanplus"/>
 <content type="boolean" default="0"/>
 <shortdesc lang="en">Use Lanplus to improve security of connection</shortdesc>
 </parameter>
 <parameter name="login" unique="0" required="0" deprecated="1">
 <getopt mixed="-l, --username=[name]"/>
 <content type="string"/>
 <shortdesc lang="en">Login name</shortdesc>
 </parameter>
 <parameter name="method" unique="0" required="0">
 <getopt mixed="-m, --method=[method]"/>
 <content type="select" default="onoff">
 <option value="onoff"/>
 <option value="cycle"/>
 </content>
 <shortdesc lang="en">Method to fence</shortdesc>
 </parameter>
 <parameter name="passwd" unique="0" required="0" deprecated="1">
 <getopt mixed="-p, --password=[password]"/>
 <content type="string"/>
 <shortdesc lang="en">Login password or passphrase</shortdesc>
 </parameter>
 <parameter name="passwd_script" unique="0" required="0" deprecated="1">
 <getopt mixed="-S, --password-script=[script]"/>
 <content type="string"/>
 <shortdesc lang="en">Script to run to retrieve password</shortdesc>
 </parameter>
 <parameter name="password" unique="0" required="0" obsoletes="passwd">
 <getopt mixed="-p, --password=[password]"/>
 <content type="string"/>
 <shortdesc lang="en">Login password or passphrase</shortdesc>
 </parameter>
 <parameter name="password_script" unique="0" required="0" obsoletes="passwd_script">
 <getopt mixed="-S, --password-script=[script]"/>
 <content type="string"/>
 <shortdesc lang="en">Script to run to retrieve password</shortdesc>
 </parameter>
 <parameter name="plug" unique="0" required="0" obsoletes="port">
 <getopt mixed="-n, --plug=[ip]"/>
 <content type="string"/>
 <shortdesc lang="en">IP address or hostname of fencing device (together with --port-as-ip)</shortdesc>
 </parameter>
 <parameter name="port" unique="0" required="0" deprecated="1">
 <getopt mixed="-n, --plug=[ip]"/>
 <content type="string"/>
 <shortdesc lang="en">IP address or hostname of fencing device (together with --port-as-ip)</shortdesc>
 </parameter>
 <parameter name="privlvl" unique="0" required="0">
 <getopt mixed="-L, --privlvl=[level]"/>
 <content type="select" default="administrator">
 <option value="callback"/>
 <option value="user"/>
 <option value="operator"/>
 <option value="administrator"/>
 </content>
 <shortdesc lang="en">Privilege level on IPMI device</shortdesc>
 </parameter>
 <parameter name="target" unique="0" required="0">
 <getopt mixed="--target=[targetaddress]"/>
 <content type="string"/>
 <shortdesc lang="en">Bridge IPMI requests to the remote target address</shortdesc>
 </parameter>
 <parameter name="username" unique="0" required="0" obsoletes="login">
 <getopt mixed="-l, --username=[name]"/>
 <content type="string"/>
 <shortdesc lang="en">Login name</shortdesc>
 </parameter>
 <parameter name="quiet" unique="0" required="0">
 <getopt mixed="-q, --quiet"/>
 <content type="boolean"/>
 <shortdesc lang="en">Disable logging to stderr. Does not affect --verbose or --debug-file or logging to syslog.</shortdesc>
 </parameter>
 <parameter name="verbose" unique="0" required="0">
 <getopt mixed="-v, --verbose"/>
 <content type="boolean"/>
 <shortdesc lang="en">Verbose mode</shortdesc>
 </parameter>
 <parameter name="debug" unique="0" required="0" deprecated="1">
 <getopt mixed="-D, --debug-file=[debugfile]"/>
 <content type="string"/>
 <shortdesc lang="en">Write debug information to given file</shortdesc>
 </parameter>
 <parameter name="debug_file" unique="0" required="0" obsoletes="debug">
 <getopt mixed="-D, --debug-file=[debugfile]"/>
 <content type="string"/>
 <shortdesc lang="en">Write debug information to given file</shortdesc>
 </parameter>
 <parameter name="version" unique="0" required="0">
 <getopt mixed="-V, --version"/>
 <content type="boolean"/>
 <shortdesc lang="en">Display version information and exit</shortdesc>
 </parameter>
 <parameter name="help" unique="0" required="0">
 <getopt mixed="-h, --help"/>
 <content type="boolean"/>
 <shortdesc lang="en">Display help and exit</shortdesc>
 </parameter>
 <parameter name="delay" unique="0" required="0">
 <getopt mixed="--delay=[seconds]"/>
 <content type="second" default="0"/>
 <shortdesc lang="en">Wait X seconds before fencing is started</shortdesc>
 </parameter>
 <parameter name="ipmitool_path" unique="0" required="0">
 <getopt mixed="--ipmitool-path=[path]"/>
 <content type="string" default="/usr/bin/ipmitool"/>
 <shortdesc lang="en">Path to ipmitool binary</shortdesc>
 </parameter>
 <parameter name="login_timeout" unique="0" required="0">
 <getopt mixed="--login-timeout=[seconds]"/>
 <content type="second" default="5"/>
 <shortdesc lang="en">Wait X seconds for cmd prompt after login</shortdesc>
 </parameter>
 <parameter name="port_as_ip" unique="0" required="0">
 <getopt mixed="--port-as-ip"/>
 <content type="boolean"/>
 <shortdesc lang="en">Make "port/plug" to be an alias to IP address</shortdesc>
 </parameter>
 <parameter name="power_timeout" unique="0" required="0">
 <getopt mixed="--power-timeout=[seconds]"/>
 <content type="second" default="20"/>
 <shortdesc lang="en">Test X seconds for status change after ON/OFF</shortdesc>
 </parameter>
 <parameter name="power_wait" unique="0" required="0">
 <getopt mixed="--power-wait=[seconds]"/>
 <content type="second" default="2"/>
 <shortdesc lang="en">Wait X seconds after issuing ON/OFF</shortdesc>
 </parameter>
 <parameter name="shell_timeout" unique="0" required="0">
 <getopt mixed="--shell-timeout=[seconds]"/>
 <content type="second" default="3"/>
 <shortdesc lang="en">Wait X seconds for cmd prompt after issuing command</shortdesc>
 </parameter>
 <parameter name="retry_on" unique="0" required="0">
 <getopt mixed="--retry-on=[attempts]"/>
 <content type="integer" default="1"/>
 <shortdesc lang="en">Count of attempts to retry power on</shortdesc>
 </parameter>
 <parameter name="sudo" unique="0" required="0" deprecated="1">
 <getopt mixed="--use-sudo"/>
 <content type="boolean"/>
 <shortdesc lang="en">Use sudo (without password) when calling 3rd party software</shortdesc>
 </parameter>
 <parameter name="use_sudo" unique="0" required="0" obsoletes="sudo">
 <getopt mixed="--use-sudo"/>
 <content type="boolean"/>
 <shortdesc lang="en">Use sudo (without password) when calling 3rd party software</shortdesc>
 </parameter>
 <parameter name="sudo_path" unique="0" required="0">
 <getopt mixed="--sudo-path=[path]"/>
 <content type="string" default="/usr/bin/sudo"/>
 <shortdesc lang="en">Path to sudo binary</shortdesc>
 </parameter>
 </parameters>
 <actions>
 <action name="on" automatic="0"/>
 <action name="off"/>
 <action name="reboot"/>
 <action name="status"/>
 <action name="monitor"/>
 <action name="metadata"/>
 <action name="manpage"/>
 <action name="validate-all"/>
 <action name="diag"/>
 <action name="stop" timeout="20s"/>
 <action name="start" timeout="20s"/>
 </actions>
</resource-agent>

Once we’ve decided what parameter values we think we need, it is a good idea
to run the fence agent’s status action manually, to verify that our values
work correctly:

fence_ipmilan --lanplus -a 192.0.2.1 -l testuser -p abc123 -o status

Chassis Power is on

	Based on that, we might create a fencing resource configuration like this in
stonith.xml (or any file name, just use the same name with cibadmin
later):

<primitive id="Fencing-pcmk-1" class="stonith" type="fence_ipmilan" >
 <instance_attributes id="Fencing-params" >
 <nvpair id="Fencing-lanplus" name="lanplus" value="1" />
 <nvpair id="Fencing-ip" name="ip" value="192.0.2.1" />
 <nvpair id="Fencing-password" name="password" value="testuser" />
 <nvpair id="Fencing-username" name="username" value="abc123" />
 </instance_attributes>
 <operations >
 <op id="Fencing-monitor-10m" interval="10m" name="monitor" timeout="300s" />
 </operations>
</primitive>

Note

Even though the man page shows that the action parameter is
supported, we do not provide that in the resource configuration.
Pacemaker will supply an appropriate action whenever the fence device
must be used.

	In this case, we don’t need to configure pcmk_host_map because
fence_ipmilan ignores the target node name and instead uses its
ip parameter to know how to contact the IPMI controller.

	We do need to let Pacemaker know which cluster node can be fenced by this
device, since fence_ipmilan doesn’t support the list action. Add
a line like this to the agent’s instance attributes:

<nvpair id="Fencing-pcmk_host_list" name="pcmk_host_list" value="pcmk-1" />

	We don’t need to configure pcmk_host_argument since ip is all the
fence agent needs (it ignores the target name).

	Make the configuration active:

cibadmin --create --scope resources --xml-file stonith.xml

	Set stonith-enabled to true (this only has to be done once):

crm_attribute --type crm_config --name stonith-enabled --update true

	Since our cluster is still in testing, we can reboot pcmk-1 without
bothering anyone, so we’ll test our fencing configuration by running this
from one of the other cluster nodes:

stonith_admin --reboot pcmk-1

Then we will verify that the node did, in fact, reboot.

We can repeat that process to create a separate fencing resource for each node.

With some other fence device types, a single fencing resource is able to be
used for all nodes. In fact, we could do that with fence_ipmilan, using the
port-as-ip parameter along with pcmk_host_map. Either approach is
fine.

8.15. Fencing Topologies

Pacemaker supports fencing nodes with multiple devices through a feature called
fencing topologies. Fencing topologies may be used to provide alternative
devices in case one fails, or to require multiple devices to all be executed
successfully in order to consider the node successfully fenced, or even a
combination of the two.

Create the individual devices as you normally would, then define one or more
fencing-level entries in the fencing-topology section of the
configuration.

	Each fencing level is attempted in order of ascending index. Allowed
values are 1 through 9.

	If a device fails, processing terminates for the current level. No further
devices in that level are exercised, and the next level is attempted instead.

	If the operation succeeds for all the listed devices in a level, the level is
deemed to have passed.

	The operation is finished when a level has passed (success), or all levels
have been attempted (failed).

	If the operation failed, the next step is determined by the scheduler and/or
the controller.

Some possible uses of topologies include:

	Try on-board IPMI, then an intelligent power switch if that fails

	Try fabric fencing of both disk and network, then fall back to power fencing
if either fails

	Wait up to a certain time for a kernel dump to complete, then cut power to
the node

Attributes of a fencing-level Element

	Attribute

	Description

	id

	A unique name for this element (required)

	target

	The name of a single node to which this level applies

	target-pattern

	An extended regular expression (as defined in POSIX [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_04])
matching the names of nodes to which this level applies

	target-attribute

	The name of a node attribute that is set (to target-value) for nodes to which this
level applies

	target-value

	The node attribute value (of target-attribute) that is set for nodes to which this
level applies

	index

	The order in which to attempt the levels. Levels are attempted in ascending order
until one succeeds. Valid values are 1 through 9.

	devices

	A comma-separated list of devices that must all be tried for this level

Note

Fencing topology with different devices for different nodes

<cib crm_feature_set="3.6.0" validate-with="pacemaker-3.5" admin_epoch="1" epoch="0" num_updates="0">
 <configuration>
 ...
 <fencing-topology>
 <!-- For pcmk-1, try poison-pill and fail back to power -->
 <fencing-level id="f-p1.1" target="pcmk-1" index="1" devices="poison-pill"/>
 <fencing-level id="f-p1.2" target="pcmk-1" index="2" devices="power"/>

 <!-- For pcmk-2, try disk and network, and fail back to power -->
 <fencing-level id="f-p2.1" target="pcmk-2" index="1" devices="disk,network"/>
 <fencing-level id="f-p2.2" target="pcmk-2" index="2" devices="power"/>
 </fencing-topology>
 ...
 <configuration>
 <status/>
</cib>

8.15.1. Example Dual-Layer, Dual-Device Fencing Topologies

The following example illustrates an advanced use of fencing-topology in a
cluster with the following properties:

	2 nodes (prod-mysql1 and prod-mysql2)

	the nodes have IPMI controllers reachable at 192.0.2.1 and 192.0.2.2

	the nodes each have two independent Power Supply Units (PSUs) connected to
two independent Power Distribution Units (PDUs) reachable at 198.51.100.1
(port 10 and port 11) and 203.0.113.1 (port 10 and port 11)

	fencing via the IPMI controller uses the fence_ipmilan agent (1 fence device
per controller, with each device targeting a separate node)

	fencing via the PDUs uses the fence_apc_snmp agent (1 fence device per
PDU, with both devices targeting both nodes)

	a random delay is used to lessen the chance of a “death match”

	fencing topology is set to try IPMI fencing first then dual PDU fencing if
that fails

In a node failure scenario, Pacemaker will first select fence_ipmilan to
try to kill the faulty node. Using the fencing topology, if that method fails,
it will then move on to selecting fence_apc_snmp twice (once for the first
PDU, then again for the second PDU).

The fence action is considered successful only if both PDUs report the required
status. If any of them fails, fencing loops back to the first fencing method,
fence_ipmilan, and so on, until the node is fenced or the fencing action is
cancelled.

Note

First fencing method: single IPMI device per target

Each cluster node has it own dedicated IPMI controller that can be contacted
for fencing using the following primitives:

<primitive class="stonith" id="fence_prod-mysql1_ipmi" type="fence_ipmilan">
 <instance_attributes id="fence_prod-mysql1_ipmi-instance_attributes">
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.1"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-login" name="login" value="fencing"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_delay_max" name="pcmk_delay_max" value="8s"/>
 </instance_attributes>
</primitive>
<primitive class="stonith" id="fence_prod-mysql2_ipmi" type="fence_ipmilan">
 <instance_attributes id="fence_prod-mysql2_ipmi-instance_attributes">
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.2"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-login" name="login" value="fencing"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_delay_max" name="pcmk_delay_max" value="8s"/>
 </instance_attributes>
</primitive>

Note

Second fencing method: dual PDU devices

Each cluster node also has 2 distinct power supplies controlled by 2
distinct PDUs:

	Node 1: PDU 1 port 10 and PDU 2 port 10

	Node 2: PDU 1 port 11 and PDU 2 port 11

The matching fencing agents are configured as follows:

<primitive class="stonith" id="fence_apc1" type="fence_apc_snmp">
 <instance_attributes id="fence_apc1-instance_attributes">
 <nvpair id="fence_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/>
 <nvpair id="fence_apc1-instance_attributes-login" name="login" value="fencing"/>
 <nvpair id="fence_apc1-instance_attributes-passwd" name="passwd" value="fencing"/>
 <nvpair id="fence_apc1-instance_attributes-pcmk_host_list"
 name="pcmk_host_map" value="prod-mysql1:10;prod-mysql2:11"/>
 <nvpair id="fence_apc1-instance_attributes-pcmk_delay_max" name="pcmk_delay_max" value="8s"/>
 </instance_attributes>
</primitive>
<primitive class="stonith" id="fence_apc2" type="fence_apc_snmp">
 <instance_attributes id="fence_apc2-instance_attributes">
 <nvpair id="fence_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/>
 <nvpair id="fence_apc2-instance_attributes-login" name="login" value="fencing"/>
 <nvpair id="fence_apc2-instance_attributes-passwd" name="passwd" value="fencing"/>
 <nvpair id="fence_apc2-instance_attributes-pcmk_host_list"
 name="pcmk_host_map" value="prod-mysql1:10;prod-mysql2:11"/>
 <nvpair id="fence_apc2-instance_attributes-pcmk_delay_max" name="pcmk_delay_max" value="8s"/>
 </instance_attributes>
</primitive>

Note

Fencing topology

Now that all the fencing resources are defined, it’s time to create the
right topology. We want to first fence using IPMI and if that does not work,
fence both PDUs to effectively and surely kill the node.

<fencing-topology>
 <fencing-level id="level-1-1" target="prod-mysql1" index="1" devices="fence_prod-mysql1_ipmi" />
 <fencing-level id="level-1-2" target="prod-mysql1" index="2" devices="fence_apc1,fence_apc2" />
 <fencing-level id="level-2-1" target="prod-mysql2" index="1" devices="fence_prod-mysql2_ipmi" />
 <fencing-level id="level-2-2" target="prod-mysql2" index="2" devices="fence_apc1,fence_apc2" />
</fencing-topology>

In fencing-topology, the lowest index value for a target determines
its first fencing method.

8.16. Remapping Reboots

When the cluster needs to reboot a node, whether because stonith-action is
reboot or because a reboot was requested externally (such as by
stonith_admin --reboot), it will remap that to other commands in two cases:

	If the chosen fencing device does not support the reboot command, the
cluster will ask it to perform off instead.

	If a fencing topology level with multiple devices must be executed, the
cluster will ask all the devices to perform off, then ask the devices to
perform on.

To understand the second case, consider the example of a node with redundant
power supplies connected to intelligent power switches. Rebooting one switch
and then the other would have no effect on the node. Turning both switches off,
and then on, actually reboots the node.

In such a case, the fencing operation will be treated as successful as long as
the off commands succeed, because then it is safe for the cluster to
recover any resources that were on the node. Timeouts and errors in the on
phase will be logged but ignored.

When a reboot operation is remapped, any action-specific timeout for the
remapped action will be used (for example, pcmk_off_timeout will be used
when executing the off command, not pcmk_reboot_timeout).

9. Collective Resources

Pacemaker supports several types of collective resources, which consist of
multiple, related resource instances.

9.1. Groups - A Syntactic Shortcut

One of the most common elements of a cluster is a set of resources
that need to be located together, start sequentially, and stop in the
reverse order. To simplify this configuration, we support the concept
of groups.

A group of two primitive resources

<group id="shortcut">
 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
 </primitive>
 <primitive id="Email" class="systemd" type="exim"/>
</group>

Although the example above contains only two resources, there is no
limit to the number of resources a group can contain. The example is
also sufficient to explain the fundamental properties of a group:

	Resources are started in the order they appear in (Public-IP first,
then Email)

	Resources are stopped in the reverse order to which they appear in
(Email first, then Public-IP)

If a resource in the group can’t run anywhere, then nothing after that
is allowed to run, too.

	If Public-IP can’t run anywhere, neither can Email;

	but if Email can’t run anywhere, this does not affect Public-IP
in any way

The group above is logically equivalent to writing:

How the cluster sees a group resource

<configuration>
 <resources>
 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
 </primitive>
 <primitive id="Email" class="systemd" type="exim"/>
 </resources>
 <constraints>
 <rsc_colocation id="xxx" rsc="Email" with-rsc="Public-IP" score="INFINITY"/>
 <rsc_order id="yyy" first="Public-IP" then="Email"/>
 </constraints>
</configuration>

Obviously as the group grows bigger, the reduced configuration effort
can become significant.

Another (typical) example of a group is a DRBD volume, the filesystem
mount, an IP address, and an application that uses them.

9.1.1. Group Properties

Properties of a Group Resource

	Field

	Description

	id

	A unique name for the group

	description

	Arbitrary text for user’s use (ignored by Pacemaker)

9.1.2. Group Options

Groups inherit the priority, target-role, and is-managed properties
from primitive resources. See Resource Options for information about
those properties.

9.1.3. Group Instance Attributes

Groups have no instance attributes. However, any that are set for the group
object will be inherited by the group’s children.

9.1.4. Group Contents

Groups may only contain a collection of cluster resources (see
Resource Properties). To refer to a child of a group resource, just use
the child’s id instead of the group’s.

9.1.5. Group Constraints

Although it is possible to reference a group’s children in
constraints, it is usually preferable to reference the group itself.

Some constraints involving groups

<constraints>
 <rsc_location id="group-prefers-node1" rsc="shortcut" node="node1" score="500"/>
 <rsc_colocation id="webserver-with-group" rsc="Webserver" with-rsc="shortcut"/>
 <rsc_order id="start-group-then-webserver" first="Webserver" then="shortcut"/>
</constraints>

9.1.6. Group Stickiness

Stickiness, the measure of how much a resource wants to stay where it
is, is additive in groups. Every active resource of the group will
contribute its stickiness value to the group’s total. So if the
default resource-stickiness is 100, and a group has seven members,
five of which are active, then the group as a whole will prefer its
current location with a score of 500.

9.2. Clones - Resources That Can Have Multiple Active Instances

Clone resources are resources that can have more than one copy active at the
same time. This allows you, for example, to run a copy of a daemon on every
node. You can clone any primitive or group resource 1.

9.2.1. Anonymous versus Unique Clones

A clone resource is configured to be either anonymous or globally unique.

Anonymous clones are the simplest. These behave completely identically
everywhere they are running. Because of this, there can be only one instance of
an anonymous clone active per node.

The instances of globally unique clones are distinct entities. All instances
are launched identically, but one instance of the clone is not identical to any
other instance, whether running on the same node or a different node. As an
example, a cloned IP address can use special kernel functionality such that
each instance handles a subset of requests for the same IP address.

9.2.2. Promotable clones

If a clone is promotable, its instances can perform a special role that
Pacemaker will manage via the promote and demote actions of the resource
agent.

Services that support such a special role have various terms for the special
role and the default role: primary and secondary, master and replica,
controller and worker, etc. Pacemaker uses the terms promoted and
unpromoted to be agnostic to what the service calls them or what they do.

All that Pacemaker cares about is that an instance comes up in the unpromoted role
when started, and the resource agent supports the promote and demote actions
to manage entering and exiting the promoted role.

9.2.3. Clone Properties

Properties of a Clone Resource

	Field

	Description

	id

	A unique name for the clone

	description

	Arbitrary text for user’s use (ignored by Pacemaker)

9.2.4. Clone Options

Options inherited from primitive resources:
priority, target-role, is-managed

Clone-specific configuration options

	Field

	Default

	Description

	globally-unique

	true if
clone-node-max
is greater than
1 (since
3.0.0),
otherwise
false

	

If true, each clone instance performs a
distinct function, such that a single node can run
more than one instance at the same time

	clone-max

	0

	The maximum number of clone instances that can
be started across the entire cluster. If 0, the
number of nodes in the cluster will be used.

	clone-node-max

	1

	If the clone is globally unique, this is the maximum
number of clone instances that can be started
on a single node

	clone-min

	0

	Require at least this number of clone instances
to be runnable before allowing resources
depending on the clone to be runnable. A value
of 0 means require all clone instances to be
runnable.

	notify

	false

	Call the resource agent’s notify action for
all active instances, before and after starting
or stopping any clone instance. The resource
agent must support this action.
Allowed values: false, true

	ordered

	false

	If true, clone instances must be started
sequentially instead of in parallel.
Allowed values: false, true

	interleave

	false

	When this clone is ordered relative to another
clone, if this option is false (the default),
the ordering is relative to all instances of
the other clone, whereas if this option is
true, the ordering is relative only to
instances on the same node.
Allowed values: false, true

	promotable

	false

	If true, clone instances can perform a
special role that Pacemaker will manage via the
resource agent’s promote and demote
actions. The resource agent must support these
actions.
Allowed values: false, true

	promoted-max

	1

	If promotable is true, the number of
instances that can be promoted at one time
across the entire cluster

	promoted-node-max

	1

	If the clone is promotable and globally unique, this
is the number of instances that can be promoted at
one time on a single node (up to clone-node-max)

Note

Deprecated Terminology

In older documentation and online examples, you may see promotable clones
referred to as multi-state, stateful, or master/slave; these mean the
same thing as promotable. Certain syntax is supported for backward
compatibility, but is deprecated and will be removed in a future version:

	Using the master-max meta-attribute instead of promoted-max

	Using the master-node-max meta-attribute instead of
promoted-node-max

	Using Master as a role name instead of Promoted

	Using Slave as a role name instead of Unpromoted

9.2.5. Clone Contents

Clones must contain exactly one primitive or group resource.

A clone that runs a web server on all nodes

<clone id="apache-clone">
 <primitive id="apache" class="systemd" type="httpd">
 <operations>
 <op id="apache-monitor" name="monitor" interval="30"/>
 </operations>
 </primitive>
</clone>

Warning

You should never reference the name of a clone’s child (the primitive or group
resource being cloned). If you think you need to do this, you probably need to
re-evaluate your design.

9.2.6. Clone Instance Attribute

Clones have no instance attributes; however, any that are set here will be
inherited by the clone’s child.

9.2.7. Clone Constraints

In most cases, a clone will have a single instance on each active cluster
node. If this is not the case, you can indicate which nodes the
cluster should preferentially assign copies to with resource location
constraints. These constraints are written no differently from those
for primitive resources except that the clone’s id is used.

Some constraints involving clones

<constraints>
 <rsc_location id="clone-prefers-node1" rsc="apache-clone" node="node1" score="500"/>
 <rsc_colocation id="stats-with-clone" rsc="apache-stats" with="apache-clone"/>
 <rsc_order id="start-clone-then-stats" first="apache-clone" then="apache-stats"/>
</constraints>

Ordering constraints behave slightly differently for clones. In the
example above, apache-stats will wait until all copies of apache-clone
that need to be started have done so before being started itself.
Only if no copies can be started will apache-stats be prevented
from being active. Additionally, the clone will wait for
apache-stats to be stopped before stopping itself.

Colocation of a primitive or group resource with a clone means that
the resource can run on any node with an active instance of the clone.
The cluster will choose an instance based on where the clone is running and
the resource’s own location preferences.

Colocation between clones is also possible. If one clone A is colocated
with another clone B, the set of allowed locations for A is limited to
nodes on which B is (or will be) active. Placement is then performed
normally.

9.2.7.1. Promotable Clone Constraints

For promotable clone resources, the first-action and/or then-action fields
for ordering constraints may be set to promote or demote to constrain the
promoted role, and colocation constraints may contain rsc-role and/or
with-rsc-role fields.

Constraints involving promotable clone resources

<constraints>
 <rsc_location id="db-prefers-node1" rsc="database" node="node1" score="500"/>
 <rsc_colocation id="backup-with-db-unpromoted" rsc="backup"
 with-rsc="database" with-rsc-role="Unpromoted"/>
 <rsc_colocation id="myapp-with-db-promoted" rsc="myApp"
 with-rsc="database" with-rsc-role="Promoted"/>
 <rsc_order id="start-db-before-backup" first="database" then="backup"/>
 <rsc_order id="promote-db-then-app" first="database" first-action="promote"
 then="myApp" then-action="start"/>
</constraints>

In the example above, myApp will wait until one of the database
copies has been started and promoted before being started
itself on the same node. Only if no copies can be promoted will myApp be
prevented from being active. Additionally, the cluster will wait for
myApp to be stopped before demoting the database.

Colocation of a primitive or group resource with a promotable clone
resource means that it can run on any node with an active instance of
the promotable clone resource that has the specified role (Promoted or
Unpromoted). In the example above, the cluster will choose a location
based on where database is running in the promoted role, and if there are
multiple promoted instances it will also factor in myApp’s own location
preferences when deciding which location to choose.

Colocation with regular clones and other promotable clone resources is also
possible. In such cases, the set of allowed locations for the rsc
clone is (after role filtering) limited to nodes on which the
with-rsc promotable clone resource is (or will be) in the specified role.
Placement is then performed as normal.

9.2.7.2. Using Promotable Clone Resources in Colocation Sets

When a promotable clone is used in a resource set
inside a colocation constraint, the resource set may take a role attribute.

In the following example, an instance of B may be promoted only on a node
where A is in the promoted role. Additionally, resources C and D
must be located on a node where both A and B are promoted.

Colocate C and D with A’s and B’s promoted instances

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="colocated-set-example-1" sequential="true" role="Promoted">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="colocated-set-example-2" sequential="true">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_colocation>
</constraints>

9.2.7.3. Using Promotable Clone Resources in Ordered Sets

When a promotable clone is used in a resource set
inside an ordering constraint, the resource set may take an action
attribute.

Start C and D after first promoting A and B

<constraints>
 <rsc_order id="order-1" score="INFINITY" >
 <resource_set id="ordered-set-1" sequential="true" action="promote">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="true" action="start">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
</constraints>

In the above example, B cannot be promoted until A has been promoted.
Additionally, resources C and D must wait until A and B have
been promoted before they can start.

9.2.8. Clone Stickiness

To achieve stable assignments, clones are slightly sticky by default. If no
value for resource-stickiness is provided, the clone will use a value of 1.
Being a small value, it causes minimal disturbance to the score calculations of
other resources but is enough to prevent Pacemaker from needlessly moving
instances around the cluster.

Note

For globally unique clones, this may result in multiple instances of the
clone staying on a single node, even after another eligible node becomes
active (for example, after being put into standby mode then made active again).
If you do not want this behavior, specify a resource-stickiness of 0
for the clone temporarily and let the cluster adjust, then set it back
to 1 if you want the default behavior to apply again.

Important

If resource-stickiness is set in the rsc_defaults section, it will
apply to clone instances as well. This means an explicit resource-stickiness
of 0 in rsc_defaults works differently from the implicit default used when
resource-stickiness is not specified.

9.2.9. Monitoring Promotable Clone Resources

The usual monitor actions are insufficient to monitor a promotable clone
resource, because Pacemaker needs to verify not only that the resource is
active, but also that its actual role matches its intended one.

Define two monitoring actions: the usual one will cover the unpromoted role,
and an additional one with role="Promoted" will cover the promoted role.

Monitoring both states of a promotable clone resource

<clone id="myPromotableRsc">
 <meta_attributes id="myPromotableRsc-meta">
 <nvpair name="promotable" value="true"/>
 </meta_attributes>
 <primitive id="myRsc" class="ocf" type="myApp" provider="myCorp">
 <operations>
 <op id="public-ip-unpromoted-check" name="monitor" interval="60"/>
 <op id="public-ip-promoted-check" name="monitor" interval="61" role="Promoted"/>
 </operations>
 </primitive>
</clone>

Important

It is crucial that every monitor operation has a different interval!
Pacemaker currently differentiates between operations
only by resource and interval; so if (for example) a promotable clone resource
had the same monitor interval for both roles, Pacemaker would ignore the
role when checking the status – which would cause unexpected return
codes, and therefore unnecessary complications.

9.2.10. Determining Which Instance is Promoted

Pacemaker can choose a promotable clone instance to be promoted in one of two
ways:

	Promotion scores: These are node attributes set via the crm_attribute
command using the --promotion option, which generally would be called by
the resource agent’s start action if it supports promotable clones. This tool
automatically detects both the resource and host, and should be used to set a
preference for being promoted. Based on this, promoted-max, and
promoted-node-max, the instance(s) with the highest preference will be
promoted.

	Constraints: Location constraints can indicate which nodes are most preferred
to be promoted.

Explicitly preferring node1 to be promoted

<rsc_location id="promoted-location" rsc="myPromotableRsc">
 <rule id="promoted-rule" score="100" role="Promoted">
 <expression id="promoted-exp" attribute="#uname" operation="eq" value="node1"/>
 </rule>
</rsc_location>

9.3. Bundles - Containerized Resources

Pacemaker supports a special syntax for launching a service inside a
container [https://en.wikipedia.org/wiki/Operating-system-level_virtualization]
with any infrastructure it requires: the bundle.

Pacemaker bundles support Docker [https://www.docker.com/] and
podman [https://podman.io/] (since 2.0.1) container technologies. 2

A bundle for a containerized web server

<bundle id="httpd-bundle">
 <podman image="pcmk:http" replicas="3"/>
 <network ip-range-start="192.168.122.131"
 host-netmask="24"
 host-interface="eth0">
 <port-mapping id="httpd-port" port="80"/>
 </network>
 <storage>
 <storage-mapping id="httpd-syslog"
 source-dir="/dev/log"
 target-dir="/dev/log"
 options="rw"/>
 <storage-mapping id="httpd-root"
 source-dir="/srv/html"
 target-dir="/var/www/html"
 options="rw,Z"/>
 <storage-mapping id="httpd-logs"
 source-dir-root="/var/log/pacemaker/bundles"
 target-dir="/etc/httpd/logs"
 options="rw,Z"/>
 </storage>
 <primitive class="ocf" id="httpd" provider="heartbeat" type="apache"/>
</bundle>

9.3.1. Bundle Prerequisites

Before configuring a bundle in Pacemaker, the user must install the appropriate
container launch technology (Docker or podman), and supply a fully configured
container image, on every node allowed to run the bundle.

Pacemaker will create an implicit resource of type ocf:heartbeat:docker or
ocf:heartbeat:podman to manage a bundle’s container. The user must ensure
that the appropriate resource agent is installed on every node allowed to run
the bundle.

9.3.2. Bundle Properties

XML Attributes of a bundle Element

	Field

	Description

	id

	A unique name for the bundle (required)

	description

	Arbitrary text for user’s use (ignored by Pacemaker)

A bundle must contain exactly one docker or podman element.

9.3.3. Bundle Container Properties

XML attributes of a docker or podman Element

	Attribute

	Default

	Description

	image

	
	Container image tag (required)

	replicas

	Value of promoted-max
if that is positive, else 1

	A positive integer specifying the number of
container instances to launch

	replicas-per-host

	1

	A positive integer specifying the number of
container instances allowed to run on a
single node

	promoted-max

	0

	A non-negative integer that, if positive,
indicates that the containerized service
should be treated as a promotable service,
with this many replicas allowed to run the
service in the promoted role

	network

	
	If specified, this will be passed to the
docker run or podman run command as the
network setting for the container.

	run-command

	/usr/sbin/pacemaker-remoted if
bundle contains a primitive,
otherwise none

	This command will be run inside the container
when launching it (“PID 1”). If the bundle
contains a primitive, this command must
start pacemaker-remoted (but could, for
example, be a script that does other stuff, too).

	options

	
	Extra command-line options to pass to the
docker run or podman run command

Note

Considerations when using cluster configurations or container images from
Pacemaker 1.1:

	If the container image has a pre-2.0.0 version of Pacemaker, set run-command
to /usr/sbin/pacemaker_remoted (note the underbar instead of dash).

	masters is accepted as an alias for promoted-max, but is deprecated since
2.0.0, and support for it will be removed in a future version.

9.3.4. Bundle Network Properties

A bundle may optionally contain one <network> element.

XML attributes of a network Element

	Attribute

	Default

	Description

	add-host

	TRUE

	If TRUE, and ip-range-start is used, Pacemaker will
automatically ensure that /etc/hosts inside the
containers has entries for each
replica name
and its assigned IP.

	ip-range-start

	
	If specified, Pacemaker will create an implicit
ocf:heartbeat:IPaddr2 resource for each container
instance, starting with this IP address, using up to
replicas sequential addresses. These addresses can be
used from the host’s network to reach the service inside
the container, though it is not visible within the
container itself. Only IPv4 addresses are currently
supported.

	host-netmask

	32

	If ip-range-start is specified, the IP addresses
are created with this CIDR netmask (as a number of bits).

	host-interface

	
	If ip-range-start is specified, the IP addresses are
created on this host interface (by default, it will be
determined from the IP address).

	control-port

	3121

	If the bundle contains a primitive, the cluster will
use this integer TCP port for communication with
Pacemaker Remote inside the container. Changing this is
useful when the container is unable to listen on the
default port, for example, when the container uses the
host’s network rather than ip-range-start (in which
case replicas-per-host must be 1), or when the bundle
may run on a Pacemaker Remote node that is already
listening on the default port. Any PCMK_remote_port
environment variable set on the host or in the container
is ignored for bundle connections.

Note

Replicas are named by the bundle id plus a dash and an integer counter starting
with zero. For example, if a bundle named httpd-bundle has replicas=2, its
containers will be named httpd-bundle-0 and httpd-bundle-1.

Additionally, a network element may optionally contain one or more
port-mapping elements.

Attributes of a port-mapping Element

	Attribute

	Default

	Description

	id

	
	A unique name for the port mapping (required)

	port

	
	If this is specified, connections to this TCP port
number on the host network (on the container’s
assigned IP address, if ip-range-start is
specified) will be forwarded to the container
network. Exactly one of port or range
must be specified in a port-mapping.

	internal-port

	value of port

	If port and this are specified, connections
to port on the host’s network will be
forwarded to this port on the container network.

	range

	
	If this is specified, connections to these TCP
port numbers (expressed as first_port-last_port)
on the host network (on the container’s assigned IP
address, if ip-range-start is specified) will
be forwarded to the same ports in the container
network. Exactly one of port or range
must be specified in a port-mapping.

Note

If the bundle contains a primitive, Pacemaker will automatically map the
control-port, so it is not necessary to specify that port in a
port-mapping.

9.3.5. Bundle Storage Properties

A bundle may optionally contain one storage element. A storage element
has no properties of its own, but may contain one or more storage-mapping
elements.

Attributes of a storage-mapping Element

	Attribute

	Default

	Description

	id

	
	A unique name for the storage mapping (required)

	source-dir

	
	The absolute path on the host’s filesystem that will be
mapped into the container. Exactly one of source-dir
and source-dir-root must be specified in a
storage-mapping.

	source-dir-root

	
	The start of a path on the host’s filesystem that will
be mapped into the container, using a different
subdirectory on the host for each container instance.
The subdirectory will be named the same as the
replica name.
Exactly one of source-dir and source-dir-root
must be specified in a storage-mapping.

	target-dir

	
	The path name within the container where the host
storage will be mapped (required)

	options

	
	A comma-separated list of file system mount
options to use when mapping the storage

Note

Pacemaker does not define the behavior if the source directory does not already
exist on the host. However, it is expected that the container technology and/or
its resource agent will create the source directory in that case.

Note

If the bundle contains a primitive,
Pacemaker will automatically map the equivalent of
source-dir=/etc/pacemaker/authkey target-dir=/etc/pacemaker/authkey
and source-dir-root=/var/log/pacemaker/bundles target-dir=/var/log into the
container, so it is not necessary to specify those paths in a
storage-mapping.

Important

The PCMK_authkey_location environment variable must not be set to anything
other than the default of /etc/pacemaker/authkey on any node in the cluster.

Important

If SELinux is used in enforcing mode on the host, you must ensure the container
is allowed to use any storage you mount into it. For Docker and podman bundles,
adding “Z” to the mount options will create a container-specific label for the
mount that allows the container access.

9.3.6. Bundle Primitive

A bundle may optionally contain one primitive
resource. The primitive may have operations, instance attributes, and
meta-attributes defined, as usual.

If a bundle contains a primitive resource, the container image must include
the Pacemaker Remote daemon, and at least one of ip-range-start or
control-port must be configured in the bundle. Pacemaker will create an
implicit ocf:pacemaker:remote resource for the connection, launch
Pacemaker Remote within the container, and monitor and manage the primitive
resource via Pacemaker Remote.

If the bundle has more than one container instance (replica), the primitive
resource will function as an implicit clone – a
promotable clone if the bundle has promoted-max
greater than zero.

Note

If you want to pass environment variables to a bundle’s Pacemaker Remote
connection or primitive, you have two options:

	Environment variables whose value is the same regardless of the underlying host
may be set using the container element’s options attribute.

	If you want variables to have host-specific values, you can use the
storage-mapping element to map a file on the host as
/etc/pacemaker/pcmk-init.env in the container (since 2.0.3).
Pacemaker Remote will parse this file as a shell-like format, with
variables set as NAME=VALUE, ignoring blank lines and comments starting
with “#”.

Important

When a bundle has a primitive, Pacemaker on all cluster nodes must be able to
contact Pacemaker Remote inside the bundle’s containers.

	The containers must have an accessible network (for example, network should
not be set to “none” with a primitive).

	The default, using a distinct network space inside the container, works in
combination with ip-range-start. Any firewall must allow access from all
cluster nodes to the control-port on the container IPs.

	If the container shares the host’s network space (for example, by setting
network to “host”), a unique control-port should be specified for each
bundle. Any firewall must allow access from all cluster nodes to the
control-port on all cluster and remote node IPs.

9.3.7. Bundle Node Attributes

If the bundle has a primitive, the primitive’s resource agent may want to set
node attributes such as promotion scores. However, with
containers, it is not apparent which node should get the attribute.

If the container uses shared storage that is the same no matter which node the
container is hosted on, then it is appropriate to use the promotion score on the
bundle node itself.

On the other hand, if the container uses storage exported from the underlying host,
then it may be more appropriate to use the promotion score on the underlying host.

Since this depends on the particular situation, the
container-attribute-target resource meta-attribute allows the user to specify
which approach to use. If it is set to host, then user-defined node attributes
will be checked on the underlying host. If it is anything else, the local node
(in this case the bundle node) is used as usual.

This only applies to user-defined attributes; the cluster will always check the
local node for cluster-defined attributes such as #uname.

If container-attribute-target is host, the cluster will pass additional
environment variables to the primitive’s resource agent that allow it to set
node attributes appropriately: CRM_meta_container_attribute_target (identical
to the meta-attribute value) and CRM_meta_physical_host (the name of the
underlying host).

Note

When called by a resource agent, the attrd_updater and crm_attribute
commands will automatically check those environment variables and set
attributes appropriately.

9.3.8. Bundle Meta-Attributes

Any meta-attribute set on a bundle will be inherited by the bundle’s
primitive and any resources implicitly created by Pacemaker for the bundle.

This includes options such as priority, target-role, and is-managed. See
Resource Options for more information.

Bundles support clone meta-attributes including notify, ordered, and
interleave.

9.3.9. Limitations of Bundles

Restarting pacemaker while a bundle is unmanaged or the cluster is in
maintenance mode may cause the bundle to fail.

Bundles may not be explicitly cloned or included in groups. This includes the
bundle’s primitive and any resources implicitly created by Pacemaker for the
bundle. (If replicas is greater than 1, the bundle will behave like a clone
implicitly.)

Bundles do not have instance attributes, utilization attributes, or operations,
though a bundle’s primitive may have them.

A bundle with a primitive can run on a Pacemaker Remote node only if the bundle
uses a distinct control-port.

	1

	Of course, the service must support running multiple instances.

	2

	Docker is a trademark of Docker, Inc. No endorsement by or association with
Docker, Inc. is implied.

10. Utilization and Placement Strategy

Pacemaker decides where a resource should run by assigning a score to every
node, considering factors such as the resource’s constraints and stickiness,
then assigning the resource to the node with the highest score.

If more than one node has the highest score, Pacemaker by default chooses
the one with the least number of assigned resources, or if that is also the
same, the one listed first in the CIB. This results in simple load balancing.

Sometimes, simple load balancing is insufficient. Different resources can use
significantly different amounts of a node’s memory, CPU, and other capacities.
Some combinations of resources may strain a node’s capacity, causing them to
fail or have degraded performance. Or, an administrator may prefer to
concentrate resources rather than balance them, to minimize energy consumption
by spare nodes.

Pacemaker offers flexibility by allowing you to configure utilization
attributes specifying capacities that each node provides and each resource
requires, as well as a placement strategy.

10.1. Utilization attributes

You can define any number of utilization attributes to represent capacities of
interest (CPU, memory, I/O bandwidth, etc.). Their values must be integers.

The nature and units of the capacities are irrelevant to Pacemaker. It just
makes sure that each node has sufficient capacity to run the resources assigned
to it.

Specifying CPU and RAM capacities of two nodes

<node id="node1" type="normal" uname="node1">
 <utilization id="node1-utilization">
 <nvpair id="node1-utilization-cpu" name="cpu" value="2"/>
 <nvpair id="node1-utilization-memory" name="memory" value="2048"/>
 </utilization>
</node>
<node id="node2" type="normal" uname="node2">
 <utilization id="node2-utilization">
 <nvpair id="node2-utilization-cpu" name="cpu" value="4"/>
 <nvpair id="node2-utilization-memory" name="memory" value="4096"/>
 </utilization>
</node>

Specifying CPU and RAM consumed by several resources

<primitive id="rsc-small" class="ocf" provider="pacemaker" type="Dummy">
 <utilization id="rsc-small-utilization">
 <nvpair id="rsc-small-utilization-cpu" name="cpu" value="1"/>
 <nvpair id="rsc-small-utilization-memory" name="memory" value="1024"/>
 </utilization>
</primitive>
<primitive id="rsc-medium" class="ocf" provider="pacemaker" type="Dummy">
 <utilization id="rsc-medium-utilization">
 <nvpair id="rsc-medium-utilization-cpu" name="cpu" value="2"/>
 <nvpair id="rsc-medium-utilization-memory" name="memory" value="2048"/>
 </utilization>
</primitive>
<primitive id="rsc-large" class="ocf" provider="pacemaker" type="Dummy">
 <utilization id="rsc-large-utilization">
 <nvpair id="rsc-large-utilization-cpu" name="cpu" value="3"/>
 <nvpair id="rsc-large-utilization-memory" name="memory" value="3072"/>
 </utilization>
</primitive>

Utilization attributes for a node may be permanent or (since 2.1.6)
transient. Permanent attributes persist after Pacemaker is restarted, while
transient attributes do not.

Transient utilization attribute for node cluster-1

<transient_attributes id="cluster-1">
 <utilization id="status-cluster-1">
 <nvpair id="status-cluster-1-cpu" name="cpu" value="1"/>
 </utilization>
</transient_attributes>

Utilization attributes may be configured only on primitive resources. Pacemaker
will consider a collective resource’s utilization based on the primitives it
contains.

Note

Utilization is supported for bundles (since 2.1.3), but only for bundles
with an inner primitive.

10.2. Placement Strategy

The placement-strategy cluster option determines how utilization attributes
are used. Its allowed values are:

	default: The cluster ignores utilization values, and places resources
according to (from highest to lowest precedence) assignment scores, the
number of resources already assigned to each node, and the order nodes are
listed in the CIB.

	utilization: The cluster uses the same method as the default strategy to
assign a resource to a node, but only nodes with sufficient free capacity to
meet the resource’s requirements are eligible.

	balanced: Only nodes with sufficient free capacity are eligible to run a
resource, and the cluster load-balances based on the sum of resource
utilization values rather than the number of resources.

	minimal: Only nodes with sufficient free capacity are eligible to run a
resource, and the cluster concentrates resources on as few nodes as possible.

To look at it another way, when deciding where to run a resource, the cluster
starts by considering all nodes, then applies these criteria one by one until
a single node remains:

	If placement-strategy is utilization, balanced, or minimal,
consider only nodes that have sufficient spare capacities to meet the
resource’s requirements.

	Consider only nodes with the highest score for the resource. Scores take into
account factors such as the node’s health; the resource’s stickiness, failure
count on the node, and migration threshold; and constraints.

	If placement-strategy is balanced, consider only nodes with the most
free capacity.

	If placement-strategy is default, utilization, or balanced,
consider only nodes with the least number of assigned resources.

	If more than one node is eligible after considering all other criteria,
choose the one listed first in the CIB.

10.3. How Multiple Capacities Combine

If only one type of utilization attribute has been defined, free capacity is a
simple numeric comparison.

If multiple utilization attributes have been defined, then the node that has
the highest value in the most attribute types has the most free capacity.

For example:

	If nodeA has more free cpus, and nodeB has more free memory,
then their free capacities are equal.

	If nodeA has more free cpus, while nodeB has more free memory
and storage, then nodeB has more free capacity.

10.4. Order of Resource Assignment

When assigning resources to nodes, the cluster chooses the next one to assign
by considering the following criteria one by one until a single resource is
selected:

	Assign the resource with the highest priority.

	If any resources are already active, assign the one with the highest score on
its current node. This avoids unnecessary resource shuffling.

	Assign the resource with the highest score on its preferred node.

	If more than one resource remains after considering all other criteria,
assign the one of them that is listed first in the CIB.

Note

For bundles, only the priority set for the bundle itself matters. If the
bundle contains a primitive, the primitive’s priority is ignored.

10.5. Limitations

The type of problem Pacemaker is dealing with here is known as the
knapsack problem [https://en.wikipedia.org/wiki/Knapsack_problem] and falls
into the NP-complete [https://en.wikipedia.org/wiki/NP-completeness]
category of computer science problems – a fancy way of saying “it takes a
really long time to solve”.

In a high-availability cluster, it is unacceptable to spend minutes, let alone
hours or days, finding an optimal solution while services are down.

Instead of trying to solve the problem completely, Pacemaker uses a “best
effort” algorithm. This arrives at a quick solution, but at the cost of
possibly leaving some resources stopped unnecessarily.

Using the example configuration at the start of this chapter, and the balanced
placement strategy:

	rsc-small would be assigned to node1

	rsc-medium would be assigned to node2

	rsc-large would remain inactive

That is not ideal. There are various approaches to dealing with the limitations
of Pacemaker’s placement strategy:

	Ensure you have sufficient physical capacity.

It might sound obvious, but if the physical capacity of your nodes is maxed
out even under normal conditions, failover isn’t going to go well. Even
without the utilization feature, you’ll start hitting timeouts and getting
secondary failures.

	Build some buffer into the capacities advertised by the nodes.

Advertise slightly more resources than we physically have, on the (usually
valid) assumption that resources will not always use 100% of their
configured utilization. This practice is sometimes called overcommitting.

	Specify resource priorities.

If the cluster is going to sacrifice services, it should be the ones you
care about the least.

11. Rules

Rules make a configuration more dynamic, allowing values to depend on
conditions such as time of day or the value of a node attribute. For example,
rules can:

	Set a higher value for resource-stickiness
during working hours to minimize downtime, and a lower value on weekends to
allow resources to move to their most preferred locations when people aren’t
around

	Automatically place the cluster into maintenance mode during a scheduled
maintenance window

	Restrict a particular department’s resources to run on certain nodes, as
determined by custom resource meta-attributes and node attributes

11.1. Rule Options

Each context that supports rules may contain a single rule element.

Attributes of a rule Element

	Name

	Type

	Default

	Description

	id

	id

	
	A unique name for this element (required)

	boolean-op

	enumeration

	and

	How to combine conditions if this rule contains more than one. Allowed
values:

	and: the rule is satisfied only if all conditions are satisfied

	or: the rule is satisfied if any condition is satisfied

11.2. Rule Conditions and Contexts

A rule element must contain one or more conditions. A condition is any of
the following, which will be described in more detail later:

	a date/time expression

	a node attribute expression

	a resource type expression

	an operation type expression

	another rule (allowing for complex combinations of conditions)

Each type of condition is allowed only in certain contexts. Although any given
context may contain only one rule element, that element may contain any
number of conditions, including other rule elements.

Rules may be used in the following contexts, which also will be described in
more detail later:

	a location constraint

	a cluster_property_set element (within the
crm_config element)

	an instance_attributes element (within an alert,
bundle, clone, group, node, op, primitive,
recipient, or template element)

	a meta_attributes element (within an alert,
bundle, clone, group, op, op_defaults, primitive,
recipient, rsc_defaults, or template element)

	a utilization element (within a node, primitive,
or template element)

11.3. Date/Time Expressions

The date_expression element configures a rule condition based on the
current date and time. It is allowed in rules in any context.

It may contain a date_spec or duration element depending on the
operation as described below.

Attributes of a date_expression Element

	Name

	Type

	Default

	Description

	id

	id

	
	A unique name for this element (required)

	start

	ISO 8601

	
	The beginning of the desired time range. Meaningful with an
operation of in_range or gt.

	end

	ISO 8601

	
	The end of the desired time range. Meaningful with an operation of
in_range or lt.

	operation

	enumeration

	in_range

	Specifies how to compare the current date/time against a desired time
range. Allowed values:

	gt: The expression is satisfied if the current date/time is after
start (which is required)

	lt: The expression is satisfied if the current date/time is before
end (which is required)

	in_range: The expression is satisfied if the current date/time is
greater than or equal to start (if specified) and less than or
equal to either end (if specified) or start plus the value of
the duration element (if one is contained in
the date_expression). At least one of start or end must be
specified. If both end and duration are specified,
duration is ignored.

	date_spec: The expression is satisfied if the current date/time
matches the specification given in the contained
date_spec element (which is required)

11.3.1. Date Specifications

A date_spec element is used within a date_expression to specify a
combination of dates and times that satisfy the expression.

Attributes of a date_spec Element

	Name

	Type

	Default

	Description

	id

	id

	
	A unique name for this element (required)

	seconds

	range

	
	If this is set, the expression is satisfied only if the current time’s
second is within this range. Allowed integers: 0 to 59.

	minutes

	range

	
	If this is set, the expression is satisfied only if the current time’s
minute is within this range. Allowed integers: 0 to 59.

	hours

	range

	
	If this is set, the expression is satisfied only if the current time’s
hour is within this range. Allowed integers: 0 to 23 where 0 is midnight
and 23 is 11 p.m.

	monthdays

	range

	
	If this is set, the expression is satisfied only if the current date’s
day of the month is in this range. Allowed integers: 1 to 31.

	weekdays

	range

	
	If this is set, the expression is satisfied only if the current date’s
ordinal day of the week is in this range. Allowed integers: 1-7 (where 1
is Monday and 7 is Sunday).

	yeardays

	range

	
	If this is set, the expression is satisfied only if the current date’s
ordinal day of the year is in this range. Allowed integers: 1-366.

	months

	range

	
	If this is set, the expression is satisfied only if the current date’s
month is in this range. Allowed integers: 1-12 where 1 is January and 12
is December.

	weeks

	range

	
	If this is set, the expression is satisfied only if the current date’s
ordinal week of the year is in this range. Allowed integers: 1-53.

	years

	range

	
	If this is set, the expression is satisfied only if the current date’s
year according to the Gregorian calendar is in this range.

	weekyears

	range

	
	If this is set, the expression is satisfied only if the current date’s
year in which the week started (according to the ISO 8601 standard) is
in this range.

	moon

	range

	
	If this is set, the expression is satisfied only if the current date’s
phase of the moon is in this range. Allowed values are 0 to 7 where 0 is
the new moon and 4 is the full moon. (deprecated since 2.1.6)

Note

Pacemaker can calculate when evaluation of a date_expression with
an operation of gt, lt, or in_range will next change,
and schedule a cluster re-check for that time. However, it does not
do this for date_spec. Instead, it evaluates the date_spec
whenever a cluster re-check naturally happens via a cluster event or
the cluster-recheck-interval cluster option.

For example, if you have a date_spec enabling a resource from 9
a.m. to 5 p.m., and cluster-recheck-interval has been set to 5
minutes, then sometime between 9 a.m. and 9:05 a.m. the cluster would
notice that it needs to start the resource, and sometime between 5
p.m. and 5:05 p.m. it would realize that it needs to stop the
resource. The timing of the actual start and stop actions will
further depend on factors such as any other actions the cluster may
need to perform first, and the load of the machine.

11.3.2. Durations

A duration element is used within a date_expression to calculate an
ending value for in_range operations when end is not supplied.

Attributes of a duration Element

	Name

	Type

	Default

	Description

	id

	id

	
	A unique name for this element (required)

	seconds

	integer

	0

	Number of seconds to add to the total duration

	minutes

	integer

	0

	Number of minutes to add to the total duration

	hours

	integer

	0

	Number of hours to add to the total duration

	days

	integer

	0

	Number of days to add to the total duration

	weeks

	integer

	0

	Number of weeks to add to the total duration

	months

	integer

	0

	Number of months to add to the total duration

	years

	integer

	0

	Number of years to add to the total duration

11.3.3. Example Date/Time Expressions

Satisfied if the current year is 2005

<rule id="rule1" score="INFINITY">
 <date_expression id="date_expr1" start="2005-001" operation="in_range">
 <duration id="duration1" years="1"/>
 </date_expression>
</rule>

or equivalently:

<rule id="rule2" score="INFINITY">
 <date_expression id="date_expr2" operation="date_spec">
 <date_spec id="date_spec2" years="2005"/>
 </date_expression>
</rule>

9 a.m. to 5 p.m. Monday through Friday

<rule id="rule3" score="INFINITY">
 <date_expression id="date_expr3" operation="date_spec">
 <date_spec id="date_spec3" hours="9-16" weekdays="1-5"/>
 </date_expression>
</rule>

Note that the 16 matches all the way through 16:59:59, because the
numeric value of the hour still matches.

9 a.m. to 6 p.m. Monday through Friday, or anytime Saturday

<rule id="rule4" score="INFINITY" boolean-op="or">
 <date_expression id="date_expr4-1" operation="date_spec">
 <date_spec id="date_spec4-1" hours="9-16" weekdays="1-5"/>
 </date_expression>
 <date_expression id="date_expr4-2" operation="date_spec">
 <date_spec id="date_spec4-2" weekdays="6"/>
 </date_expression>
</rule>

9 a.m. to 5 p.m. or 9 p.m. to 12 a.m. Monday through Friday

<rule id="rule5" score="INFINITY" boolean-op="and">
 <rule id="rule5-nested1" score="INFINITY" boolean-op="or">
 <date_expression id="date_expr5-1" operation="date_spec">
 <date_spec id="date_spec5-1" hours="9-16"/>
 </date_expression>
 <date_expression id="date_expr5-2" operation="date_spec">
 <date_spec id="date_spec5-2" hours="21-23"/>
 </date_expression>
 </rule>
 <date_expression id="date_expr5-3" operation="date_spec">
 <date_spec id="date_spec5-3" weekdays="1-5"/>
 </date_expression>
</rule>

Mondays in March 2005

<rule id="rule6" score="INFINITY" boolean-op="and">
 <date_expression id="date_expr6-1" operation="date_spec">
 <date_spec id="date_spec6" weekdays="1"/>
 </date_expression>
 <date_expression id="date_expr6-2" operation="in_range"
 start="2005-03-01" end="2005-04-01"/>
 </date_expression>
</rule>

Note

Because no time is specified with the above dates, 00:00:00 is
implied. This means that the range includes all of 2005-03-01 but
only the first second of 2005-04-01. You may wish to write end
as "2005-03-31T23:59:59" to avoid confusion.

11.4. Node Attribute Expressions

The expression element configures a rule condition based on the value of a
node attribute. It is allowed in rules in location constraints and in
instance_attributes elements within bundle, clone, group,
op, primitive, and template elements.

Attributes of an expression Element

	Name

	Type

	Default

	Description

	id

	id

	
	A unique name for this element (required)

	attribute

	text

	
	Name of the node attribute to test (required)

	operation

	enumeration

	
	The comparison to perform (required). Allowed values:

	defined: The expression is satisfied if the node has the named
attribute

	not_defined: The expression is satisfied if the node does not have
the named attribute

	lt: The expression is satisfied if the node attribute value is
less than the reference value

	gt: The expression is satisfied if the node attribute value is
greater than the reference value

	lte: The expression is satisfied if the node attribute value is
less than or equal to the reference value

	gte: The expression is satisfied if the node attribute value is
greater than or equal to the reference value

	eq: The expression is satisfied if the node attribute value is
equal to the reference value

	ne: The expression is satisfied if the node attribute value is not
equal to the reference value

	type

	enumeration

	The default type for lt, gt, lte, and gte operations is
number if either value contains a decimal point character, or
integer otherwise. The default type for all other operations is
string. If a numeric parse fails for either value, then the values
are compared as type string.

	How to interpret values. Allowed values are string, integer
(since 2.0.5), number, and version. integer truncates
floating-point values if necessary before performing a 64-bit integer
comparison. number performs a double-precision floating-point
comparison (32-bit integer before 2.0.5).

	value

	text

	
	Reference value to compare node attribute against (used only with, and
required for, operations other than defined and not_defined)

	value-source

	enumeration

	literal

	How the reference value is obtained. Allowed values:

	literal: value contains the literal reference value to compare

	param: value contains the name of a resource parameter to
compare (valid only in the context of a location constraint)

	meta: value is the name of a resource meta-attribute to
compare (valid only in the context of a location constraint)

In addition to custom node attributes defined by the administrator, the cluster
defines special, built-in node attributes for each node that can also be used
in rule expressions.

Built-in Node Attributes

	Name

	Description

	#uname

	Node name

	#id

	Node ID

	#kind

	Node type (cluster for cluster nodes, remote for Pacemaker
Remote nodes created with the ocf:pacemaker:remote resource, and
container for Pacemaker Remote guest nodes and bundle nodes)

	#is_dc

	true if this node is the cluster’s Designated Controller (DC),
false otherwise

	#cluster-name

	The value of the cluster-name cluster property, if set

	#site-name

	The value of the site-name node attribute, if set, otherwise
identical to #cluster-name

11.5. Resource Type Expressions

The rsc_expression element (since 2.0.5) configures a rule condition
based on the agent used for a resource. It is allowed in rules in a
meta_attributes element within a rsc_defaults or op_defaults
element.

Attributes of a rsc_expression Element

	Name

	Type

	Default

	Description

	id

	id

	
	A unique name for this element (required)

	class

	text

	
	If this is set, the expression is satisfied only if the resource’s agent
standard matches this value

	provider

	text

	
	If this is set, the expression is satisfied only if the resource’s agent
provider matches this value

	type

	text

	
	If this is set, the expression is satisfied only if the resource’s agent
type matches this value

11.5.1. Example Resource Type Expressions

Satisfied for ocf:heartbeat:IPaddr2 resources

<rule id="rule1" score="INFINITY">
 <rsc_expression id="rule_expr1" class="ocf" provider="heartbeat" type="IPaddr2"/>
</rule>

Satisfied for stonith:fence_xvm resources

<rule id="rule2" score="INFINITY">
 <rsc_expression id="rule_expr2" class="stonith" type="fence_xvm"/>
</rule>

11.6. Operation Type Expressions

The op_expression element (since 2.0.5) configures a rule condition based
on a resource operation name and interval. It is allowed in rules in a
meta_attributes element within an op_defaults element.

Attributes of an op_expression Element

	Name

	Type

	Default

	Description

	id

	id

	
	A unique name for this element (required)

	name

	text

	
	The expression is satisfied only if the operation’s name matches this
value (required)

	interval

	duration

	
	If this is set, the expression is satisfied only if the operation’s
interval matches this value

11.6.1. Example Operation Type Expressions

Expression is satisfied for all monitor actions

<rule id="rule1" score="INFINITY">
 <op_expression id="rule_expr1" name="monitor"/>
</rule>

Expression is satisfied for all monitor actions with a 10-second interval

<rule id="rule2" score="INFINITY">
 <op_expression id="rule_expr2" name="monitor" interval="10s"/>
</rule>

11.7. Using Rules to Determine Resource Location

If a location constraint contains a rule, the
cluster will apply the constraint to all nodes where the rule is satisfied.
This acts as if identical location constraints without rules were defined for
each of the nodes.

In the context of a location constraint, rule elements may take additional
attributes. These have an effect only when set for the constraint’s top-level
rule; they are ignored if set on a subrule.

Extra Attributes of a rule Element in a Location Constraint

	Name

	Type

	Default

	Description

	role

	enumeration

	Started

	If this is set in the constraint’s top-level rule, the constraint acts
as if role were set to this in the rsc_location element.

	score

	score

	
	If this is set in the constraint’s top-level rule, the constraint acts
as if score were set to this in the rsc_location element.
Only one of score and score-attribute may be set.

	score-attribute

	text

	
	If this is set in the constraint’s top-level rule, the constraint acts
as if score were set to the value of this node attribute on each
node where the rule is satisfied. Only one of score and
score-attribute may be set.

Consider the following simple location constraint:

Prevent resource webserver from running on node node3

<rsc_location id="ban-apache-on-node3" rsc="webserver"
 score="-INFINITY" node="node3"/>

The same constraint can be written more verbosely using a rule:

Prevent resource webserver from running on node node3 using a rule

<rsc_location id="ban-apache-on-node3" rsc="webserver">
 <rule id="ban-apache-rule" score="-INFINITY">
 <expression id="ban-apache-expr" attribute="#uname"
 operation="eq" value="node3"/>
 </rule>
</rsc_location>

The advantage of using the expanded form is that one could add more expressions
(for example, limiting the constraint to certain days of the week).

11.7.1. Location Rules Based on Other Node Properties

The expanded form allows us to match node attributes other than its name. As an
example, consider this configuration of custom node attributes specifying each
node’s CPU capacity:

Sample node section with node attributes

<nodes>
 <node id="uuid1" uname="c001n01" type="normal">
 <instance_attributes id="uuid1-custom_attrs">
 <nvpair id="uuid1-cpu_mips" name="cpu_mips" value="1234"/>
 </instance_attributes>
 </node>
 <node id="uuid2" uname="c001n02" type="normal">
 <instance_attributes id="uuid2-custom_attrs">
 <nvpair id="uuid2-cpu_mips" name="cpu_mips" value="5678"/>
 </instance_attributes>
 </node>
</nodes>

We can use a rule to prevent a resource from running on underpowered machines:

Rule using a node attribute (to be used inside a location constraint)

<rule id="need-more-power-rule" score="-INFINITY">
 <expression id="need-more-power-expr" attribute="cpu_mips"
 operation="lt" value="3000"/>
</rule>

11.7.2. Using score-attribute Instead of score

When using score-attribute instead of score, each node matched by the
rule has its score adjusted according to its value for the named node
attribute.

In the previous example, if the location constraint rule used
score-attribute="cpu_mips" instead of score="-INFINITY", node
c001n01 would have its preference to run the resource increased by 1234
whereas node c001n02 would have its preference increased by 5678.

11.7.3. Specifying location scores using pattern submatches

Location constraints may use rsc-pattern to apply the
constraint to all resources whose IDs match the given pattern. The pattern may
contain up to 9 submatches in parentheses, whose values may be used as %1
through %9 in a rule element’s score-attribute or an expression
element’s attribute.

For example, the following configuration excerpt gives the resources
server-httpd and ip-httpd a preference of 100 on node1 and 50 on node2,
and ip-gateway a preference of -100 on node1 and 200 on node2.

Location constraint using submatches

<nodes>
 <node id="1" uname="node1">
 <instance_attributes id="node1-attrs">
 <nvpair id="node1-prefer-httpd" name="prefer-httpd" value="100"/>
 <nvpair id="node1-prefer-gateway" name="prefer-gateway" value="-100"/>
 </instance_attributes>
 </node>
 <node id="2" uname="node2">
 <instance_attributes id="node2-attrs">
 <nvpair id="node2-prefer-httpd" name="prefer-httpd" value="50"/>
 <nvpair id="node2-prefer-gateway" name="prefer-gateway" value="200"/>
 </instance_attributes>
 </node>
</nodes>
<resources>
 <primitive id="server-httpd" class="ocf" provider="heartbeat" type="apache"/>
 <primitive id="ip-httpd" class="ocf" provider="heartbeat" type="IPaddr2"/>
 <primitive id="ip-gateway" class="ocf" provider="heartbeat" type="IPaddr2"/>
</resources>
<constraints>
 <!-- The following constraint says that for any resource whose name
 starts with "server-" or "ip-", that resource's preference for a
 node is the value of the node attribute named "prefer-" followed
 by the part of the resource name after "server-" or "ip-",
 wherever such a node attribute is defined.
 -->
 <rsc_location id="location1" rsc-pattern="(server|ip)-(.*)">
 <rule id="location1-rule1" score-attribute="prefer-%2">
 <expression id="location1-rule1-expression1" attribute="prefer-%2" operation="defined"/>
 </rule>
 </rsc_location>
</constraints>

11.8. Using Rules to Define Options

Rules may be used to control a variety of options:

	Cluster options (as cluster_property_set
elements)

	Node attributes (as instance_attributes or
utilization elements inside a node element)

	Resource options (as utilization,
meta_attributes, or instance_attributes elements inside a resource
definition element or op , rsc_defaults, op_defaults, or
template element)

	Operation options (as meta_attributes
elements inside an op or op_defaults element)

	Alert options (as instance_attributes or
meta_attributes elements inside an alert or recipient element)

11.8.1. Using Rules to Control Resource Options

Often some cluster nodes will be different from their peers. Sometimes,
these differences (for example, the location of a binary, or the names of
network interfaces) require resources to be configured differently depending
on the machine they’re hosted on.

By defining multiple instance_attributes elements for the resource and
adding a rule to each, we can easily handle these special cases.

In the example below, mySpecialRsc will use eth1 and port 9999 when run on
node1, eth2 and port 8888 on node2 and default to eth0 and port 9999 for all
other nodes.

Defining different resource options based on the node name

<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
 <instance_attributes id="special-node1" score="3">
 <rule id="node1-special-case" score="INFINITY" >
 <expression id="node1-special-case-expr" attribute="#uname"
 operation="eq" value="node1"/>
 </rule>
 <nvpair id="node1-interface" name="interface" value="eth1"/>
 </instance_attributes>
 <instance_attributes id="special-node2" score="2" >
 <rule id="node2-special-case" score="INFINITY">
 <expression id="node2-special-case-expr" attribute="#uname"
 operation="eq" value="node2"/>
 </rule>
 <nvpair id="node2-interface" name="interface" value="eth2"/>
 <nvpair id="node2-port" name="port" value="8888"/>
 </instance_attributes>
 <instance_attributes id="defaults" score="1" >
 <nvpair id="default-interface" name="interface" value="eth0"/>
 <nvpair id="default-port" name="port" value="9999"/>
 </instance_attributes>
</primitive>

Multiple instance_attributes elements are evaluated from highest score to
lowest. If not supplied, the score defaults to zero. Objects with equal scores
are processed in their listed order. If an instance_attributes object has
no rule or a satisfied rule, then for any parameter the resource does not
yet have a value for, the resource will use the value defined by the
instance_attributes.

For example, given the configuration above, if the resource is placed on
node1:

	special-node1 has the highest score (3) and so is evaluated first; its
rule is satisfied, so interface is set to eth1.

	special-node2 is evaluated next with score 2, but its rule is not
satisfied, so it is ignored.

	defaults is evaluated last with score 1, and has no rule, so its values
are examined; interface is already defined, so the value here is not
used, but port is not yet defined, so port is set to 9999.

11.8.2. Using Rules to Control Resource Defaults

Rules can be used for resource and operation defaults.

The following example illustrates how to set a different
resource-stickiness value during and outside work hours. This allows
resources to automatically move back to their most preferred hosts, but at a
time that (in theory) does not interfere with business activities.

Change resource-stickiness during working hours

<rsc_defaults>
 <meta_attributes id="core-hours" score="2">
 <rule id="core-hour-rule" score="0">
 <date_expression id="nine-to-five-Mon-to-Fri" operation="date_spec">
 <date_spec id="nine-to-five-Mon-to-Fri-spec" hours="9-16" weekdays="1-5"/>
 </date_expression>
 </rule>
 <nvpair id="core-stickiness" name="resource-stickiness" value="INFINITY"/>
 </meta_attributes>
 <meta_attributes id="after-hours" score="1" >
 <nvpair id="after-stickiness" name="resource-stickiness" value="0"/>
 </meta_attributes>
</rsc_defaults>

rsc_expression is valid within both rsc_defaults and op_defaults;
op_expression is valid only within op_defaults.

Default all IPaddr2 resources to stopped

<rsc_defaults>
 <meta_attributes id="op-target-role">
 <rule id="op-target-role-rule" score="INFINITY">
 <rsc_expression id="op-target-role-expr" class="ocf" provider="heartbeat"
 type="IPaddr2"/>
 </rule>
 <nvpair id="op-target-role-nvpair" name="target-role" value="Stopped"/>
 </meta_attributes>
</rsc_defaults>

Default all monitor action timeouts to 7 seconds

<op_defaults>
 <meta_attributes id="op-monitor-defaults">
 <rule id="op-monitor-default-rule" score="INFINITY">
 <op_expression id="op-monitor-default-expr" name="monitor"/>
 </rule>
 <nvpair id="op-monitor-timeout" name="timeout" value="7s"/>
 </meta_attributes>
</op_defaults>

Default the timeout on all 10-second-interval monitor actions on IPaddr2 resources to 8 seconds

<op_defaults>
 <meta_attributes id="op-monitor-and">
 <rule id="op-monitor-and-rule" score="INFINITY">
 <rsc_expression id="op-monitor-and-rsc-expr" class="ocf" provider="heartbeat"
 type="IPaddr2"/>
 <op_expression id="op-monitor-and-op-expr" name="monitor" interval="10s"/>
 </rule>
 <nvpair id="op-monitor-and-timeout" name="timeout" value="8s"/>
 </meta_attributes>
</op_defaults>

11.8.3. Using Rules to Control Cluster Options

Controlling cluster options is achieved in much the same manner as specifying
different resource options on different nodes.

The following example illustrates how to set maintenance_mode during a
scheduled maintenance window. This will keep the cluster running but not
monitor, start, or stop resources during this time.

Schedule a maintenance window for 9 to 11 p.m. CDT Sept. 20, 2019

<crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="bootstrap-stonith-enabled" name="stonith-enabled" value="1"/>
 </cluster_property_set>
 <cluster_property_set id="normal-set" score="10">
 <nvpair id="normal-maintenance-mode" name="maintenance-mode" value="false"/>
 </cluster_property_set>
 <cluster_property_set id="maintenance-window-set" score="1000">
 <nvpair id="maintenance-nvpair1" name="maintenance-mode" value="true"/>
 <rule id="maintenance-rule1" score="INFINITY">
 <date_expression id="maintenance-date1" operation="in_range"
 start="2019-09-20 21:00:00 -05:00" end="2019-09-20 23:00:00 -05:00"/>
 </rule>
 </cluster_property_set>
</crm_config>

Important

The cluster_property_set with an id set to
“cib-bootstrap-options” will always have the highest priority,
regardless of any scores. Therefore, rules in another
cluster_property_set can never take effect for any
properties listed in the bootstrap set.

12. Access Control Lists (ACLs)

By default, the root user or any user in the haclient group can
modify Pacemaker’s CIB without restriction. Pacemaker offers access control
lists (ACLs) to provide more fine-grained authorization.

Important

Being able to modify the CIB’s resource section allows a user to run any
executable file as root, by configuring it as an LSB resource with a full
path.

12.1. ACL Prerequisites

In order to use ACLs:

	The enable-acl cluster option must be set to
true.

	Desired users must have user accounts in the haclient group on all
cluster nodes in the cluster.

	If your CIB was created before Pacemaker 1.1.12, it might need to be updated
to the current schema (using cibadmin --upgrade or a higher-level tool
equivalent) in order to use the syntax documented here.

	Prior to the 2.1.0 release, the Pacemaker software had to have been built
with ACL support. If you are using an older release, your installation
supports ACLs only if the output of the command pacemakerd --features
contains acls. In newer versions, ACLs are always enabled.

Important

enable-acl should be set either by the root user, or as part of a batch
of CIB changes including roles and users. Otherwise, the user setting it
might lock themselves out from making any further changes.

12.2. ACL Configuration

ACLs are specified within an acls element of the CIB. The acls element
may contain any number of acl_role, acl_target, and acl_group
elements.

12.3. ACL Roles

An ACL role is a collection of permissions allowing or denying access to
particular portions of the CIB. A role is configured with an acl_role
element in the CIB acls section.

Properties of an acl_role element

	Attribute

	Description

	id

	A unique name for the role (required)

	description

	Arbitrary text for user’s use (ignored by Pacemaker)

An acl_role element may contain any number of acl_permission elements.

Properties of an acl_permission element

	Attribute

	Description

	id

	A unique name for the permission (required)

	description

	Arbitrary text for user’s use (ignored by Pacemaker)

	kind

	The access being granted. Allowed values are read,
write, and deny. A value of write grants both
read and write access.

	object-type

	The name of an XML element in the CIB to which the
permission applies. (Exactly one of object-type,
xpath, and reference must be specified for a
permission.)

	attribute

	If specified, the permission applies only to
object-type elements that have this attribute set (to
any value). If not specified, the permission applies to
all object-type elements. May only be used with
object-type.

	reference

	The ID of an XML element in the CIB to which the
permission applies. (Exactly one of object-type,
xpath, and reference must be specified for a
permission.)

	xpath

	An XPath [https://www.w3.org/TR/xpath-10/]
specification selecting an XML element in the CIB to
which the permission applies. Attributes may be specified
in the XPath to select particular elements, but the
permissions apply to the entire element. (Exactly one of
object-type, xpath, and reference must be
specified for a permission.)

Important

	Permissions are applied to the selected XML element’s entire XML subtree
(all elements enclosed within it).

	Write permission grants the ability to create, modify, or remove the
element and its subtree, and also the ability to create any “scaffolding”
elements (enclosing elements that do not have attributes other than an
ID).

	Permissions for more specific matches (more deeply nested elements) take
precedence over more general ones.

	If multiple permissions are configured for the same match (for example, in
different roles applied to the same user), any deny permission takes
precedence, then write, then lastly read.

12.4. ACL Targets and Groups

ACL targets correspond to user accounts on the system.

Properties of an acl_target element

	Attribute

	Description

	id

	A unique identifier for the target (if name is not
specified, this must be the name of the user account)
(required)

	name

	If specified, the user account name (this allows you to
specify a user name that is already used as the id
for some other configuration element) (since 2.1.5)

ACL groups correspond to groups on the system. Any role configured for these
groups apply to all users in that group (since 2.1.5).

Properties of an acl_group element

	Attribute

	Description

	id

	A unique identifier for the group (if name is not
specified, this must be the group name) (required)

	name

	If specified, the group name (this allows you to specify
a group name that is already used as the id for some
other configuration element)

Each acl_target and acl_group element may contain any number of role
elements.

Note

If the system users and groups are defined by some network service (such as
LDAP), the cluster itself will be unaffected by outages in the service, but
affected users and groups will not be able to make changes to the CIB.

Properties of a role element

	Attribute

	Description

	id

	The id of an acl_role element that specifies
permissions granted to the enclosing target or group.

Important

The root and hacluster user accounts always have full access to
the CIB, regardless of ACLs. For all other user accounts, when enable-acl
is true, permission to all parts of the CIB is denied by default (permissions
must be explicitly granted).

12.5. ACLs and Pacemaker Remote Nodes

ACLs apply differently on Pacemaker Remote nodes, which are assumed to be
special-purpose hosts without typical user accounts. Instead, CIB modifications
coming from a Pacemaker Remote node use the node’s name as the ACL user name,
and pacemaker-remote as the role.

12.6. ACL Examples

<acls>

 <acl_role id="read_all">
 <acl_permission id="read_all-cib" kind="read" xpath="/cib" />
 </acl_role>

 <acl_role id="operator">

 <acl_permission id="operator-maintenance-mode" kind="write"
 xpath="//crm_config//nvpair[@name='maintenance-mode']" />

 <acl_permission id="operator-maintenance-attr" kind="write"
 xpath="//nvpair[@name='maintenance']" />

 <acl_permission id="operator-target-role" kind="write"
 xpath="//resources//meta_attributes/nvpair[@name='target-role']" />

 <acl_permission id="operator-is-managed" kind="write"
 xpath="//resources//nvpair[@name='is-managed']" />

 <acl_permission id="operator-rsc_location" kind="write"
 object-type="rsc_location" />

 </acl_role>

 <acl_role id="administrator">
 <acl_permission id="administrator-cib" kind="write" xpath="/cib" />
 </acl_role>

 <acl_role id="minimal">

 <acl_permission id="minimal-standby" kind="read"
 description="allow reading standby node attribute (permanent or transient)"
 xpath="//instance_attributes/nvpair[@name='standby']"/>

 <acl_permission id="minimal-maintenance" kind="read"
 description="allow reading maintenance node attribute (permanent or transient)"
 xpath="//nvpair[@name='maintenance']"/>

 <acl_permission id="minimal-target-role" kind="read"
 description="allow reading resource target roles"
 xpath="//resources//meta_attributes/nvpair[@name='target-role']"/>

 <acl_permission id="minimal-is-managed" kind="read"
 description="allow reading resource managed status"
 xpath="//resources//meta_attributes/nvpair[@name='is-managed']"/>

 <acl_permission id="minimal-deny-instance-attributes" kind="deny"
 xpath="//instance_attributes"/>

 <acl_permission id="minimal-deny-meta-attributes" kind="deny"
 xpath="//meta_attributes"/>

 <acl_permission id="minimal-deny-operations" kind="deny"
 xpath="//operations"/>

 <acl_permission id="minimal-deny-utilization" kind="deny"
 xpath="//utilization"/>

 <acl_permission id="minimal-nodes" kind="read"
 description="allow reading node names/IDs (attributes are denied separately)"
 xpath="/cib/configuration/nodes"/>

 <acl_permission id="minimal-resources" kind="read"
 description="allow reading resource names/agents (parameters are denied separately)"
 xpath="/cib/configuration/resources"/>

 <acl_permission id="minimal-deny-constraints" kind="deny"
 xpath="/cib/configuration/constraints"/>

 <acl_permission id="minimal-deny-topology" kind="deny"
 xpath="/cib/configuration/fencing-topology"/>

 <acl_permission id="minimal-deny-op_defaults" kind="deny"
 xpath="/cib/configuration/op_defaults"/>

 <acl_permission id="minimal-deny-rsc_defaults" kind="deny"
 xpath="/cib/configuration/rsc_defaults"/>

 <acl_permission id="minimal-deny-alerts" kind="deny"
 xpath="/cib/configuration/alerts"/>

 <acl_permission id="minimal-deny-acls" kind="deny"
 xpath="/cib/configuration/acls"/>

 <acl_permission id="minimal-cib" kind="read"
 description="allow reading cib element and crm_config/status sections"
 xpath="/cib"/>

 </acl_role>

 <acl_target id="alice">
 <role id="minimal"/>
 </acl_target>

 <acl_target id="bob">
 <role id="read_all"/>
 </acl_target>

 <acl_target id="carol">
 <role id="read_all"/>
 <role id="operator"/>
 </acl_target>

 <acl_target id="dave">
 <role id="administrator"/>
 </acl_target>

</acls>

In the above example, the user alice has the minimal permissions necessary
to run basic Pacemaker CLI tools, including using crm_mon to view the
cluster status, without being able to modify anything. The user bob can
view the entire configuration and status of the cluster, but not make any
changes. The user carol can read everything, and change selected cluster
properties as well as resource roles and location constraints. Finally,
dave has full read and write access to the entire CIB.

Looking at the minimal role in more depth, it is designed to allow read
access to the cib tag itself, while denying access to particular portions
of its subtree (which is the entire CIB).

This is because the DC node is indicated in the cib tag, so crm_mon
will not be able to report the DC otherwise. However, this does change the
security model to allow by default, since any portions of the CIB not
explicitly denied will be readable. The cib read access could be removed
and replaced with read access to just the crm_config and status
sections, for a safer approach at the cost of not seeing the DC in status
output.

For a simpler configuration, the minimal role allows read access to the
entire crm_config section, which contains cluster properties. It would be
possible to allow read access to specific properties instead (such as
stonith-enabled, dc-uuid, have-quorum, and cluster-name) to
restrict access further while still allowing status output, but cluster
properties are unlikely to be considered sensitive.

12.7. ACL Limitations

12.7.1. Actions performed via IPC rather than the CIB

ACLs apply only to the CIB.

That means ACLs apply to command-line tools that operate by reading or writing
the CIB, such as crm_attribute when managing permanent node attributes,
crm_mon, and cibadmin.

However, command-line tools that communicate directly with Pacemaker daemons
via IPC are not affected by ACLs. For example, users in the haclient
group may still do the following, regardless of ACLs:

	Query transient node attribute values using crm_attribute and
attrd_updater.

	Query basic node information using crm_node.

	Erase resource operation history using crm_resource.

	Query fencing configuration information, and execute fencing against nodes,
using stonith_admin.

12.7.2. ACLs and Pacemaker Remote

ACLs apply to commands run on Pacemaker Remote nodes using the Pacemaker Remote
node’s name as the ACL user name.

The idea is that Pacemaker Remote nodes (especially virtual machines and
containers) are likely to be purpose-built and have different user accounts
from full cluster nodes.

13. Alerts

Alerts may be configured to take some external action when a cluster event
occurs (node failure, resource starting or stopping, etc.).

13.1. Alert Agents

As with resource agents, the cluster calls an external program (an
alert agent) to handle alerts. The cluster passes information about the event
to the agent via environment variables. Agents can do anything desired with
this information (send an e-mail, log to a file, update a monitoring system,
etc.).

Simple alert configuration

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh" />
 </alerts>
</configuration>

In the example above, the cluster will call my-script.sh for each event.

Multiple alert agents may be configured; the cluster will call all of them for
each event.

Alert agents will be called only on cluster nodes. They will be called for
events involving Pacemaker Remote nodes, but they will never be called on
those nodes.

For more information about sample alert agents provided by Pacemaker and about
developing custom alert agents, see the Pacemaker Administration document.

13.2. Alert Recipients

Usually, alerts are directed towards a recipient. Thus, each alert may be
additionally configured with one or more recipients. The cluster will call the
agent separately for each recipient.

Alert configuration with recipient

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <recipient id="my-alert-recipient" value="some-address"/>
 </alert>
 </alerts>
</configuration>

In the above example, the cluster will call my-script.sh for each event,
passing the recipient some-address as an environment variable.

The recipient may be anything the alert agent can recognize – an IP address,
an e-mail address, a file name, whatever the particular agent supports.

13.3. Alert Meta-Attributes

As with resources, meta-attributes can be configured for alerts to change
whether and how Pacemaker calls them.

Meta-Attributes of an Alert or Recipient

	Meta-Attribute

	Default

	Description

	description

	
	Arbitrary text for user’s use (ignored by Pacemaker)

	enabled

	true

	If false for an alert, the alert will not be used.
If true for an alert and false for a particular
recipient of that alert, that recipient will not be
used. (since 2.1.6)

	timestamp-format

	%H:%M:%S.%06N

	Format the cluster will use when sending the
event’s timestamp to the agent. This is a string as
used with the date(1) command.

	timeout

	30s

	If the alert agent does not complete within this
amount of time, it will be terminated.

Meta-attributes can be configured per alert and/or per recipient.

Alert configuration with meta-attributes

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <meta_attributes id="my-alert-attributes">
 <nvpair id="my-alert-attributes-timeout" name="timeout"
 value="15s"/>
 </meta_attributes>
 <recipient id="my-alert-recipient1" value="someuser@example.com">
 <meta_attributes id="my-alert-recipient1-attributes">
 <nvpair id="my-alert-recipient1-timestamp-format"
 name="timestamp-format" value="%D %H:%M"/>
 </meta_attributes>
 </recipient>
 <recipient id="my-alert-recipient2" value="otheruser@example.com">
 <meta_attributes id="my-alert-recipient2-attributes">
 <nvpair id="my-alert-recipient2-timestamp-format"
 name="timestamp-format" value="%c"/>
 </meta_attributes>
 </recipient>
 </alert>
 </alerts>
</configuration>

In the above example, the my-script.sh will get called twice for each
event, with each call using a 15-second timeout. One call will be passed the
recipient someuser@example.com and a timestamp in the format %D %H:%M,
while the other call will be passed the recipient otheruser@example.com and
a timestamp in the format %c.

13.4. Alert Instance Attributes

As with resource agents, agent-specific configuration values may be configured
as instance attributes. These will be passed to the agent as additional
environment variables. The number, names and allowed values of these instance
attributes are completely up to the particular agent.

Alert configuration with instance attributes

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <meta_attributes id="my-alert-attributes">
 <nvpair id="my-alert-attributes-timeout" name="timeout"
 value="15s"/>
 </meta_attributes>
 <instance_attributes id="my-alert-options">
 <nvpair id="my-alert-options-debug" name="debug"
 value="false"/>
 </instance_attributes>
 <recipient id="my-alert-recipient1"
 value="someuser@example.com"/>
 </alert>
 </alerts>
</configuration>

13.5. Alert Filters

By default, an alert agent will be called for node events, fencing events, and
resource events. An agent may choose to ignore certain types of events, but
there is still the overhead of calling it for those events. To eliminate that
overhead, you may select which types of events the agent should receive.

Alert filters are configured within a select element inside an alert
element.

Possible alert filters

	Name

	Events alerted

	select_nodes

	A node joins or leaves the cluster (whether at the cluster layer for
cluster nodes, or via a remote connection for Pacemaker Remote nodes).

	select_fencing

	Fencing or unfencing of a node completes (whether successfully or not).

	select_resources

	A resource action other than meta-data completes (whether successfully
or not).

	select_attributes

	A transient attribute value update is sent to the CIB.

Alert configuration to receive only node events and fencing events

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <select>
 <select_nodes />
 <select_fencing />
 </select>
 <recipient id="my-alert-recipient1"
 value="someuser@example.com"/>
 </alert>
 </alerts>
</configuration>

With <select_attributes> (the only event type not enabled by default), the
agent will receive alerts when a node attribute changes. If you wish the agent
to be called only when certain attributes change, you can configure that as well.

Alert configuration to be called when certain node attributes change

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <select>
 <select_attributes>
 <attribute id="alert-standby" name="standby" />
 <attribute id="alert-shutdown" name="shutdown" />
 </select_attributes>
 </select>
 <recipient id="my-alert-recipient1" value="someuser@example.com"/>
 </alert>
 </alerts>
</configuration>

Node attribute alerts are currently considered experimental. Alerts may be
limited to attributes set via attrd_updater, and agents may be called
multiple times with the same attribute value.

14. Reusing Parts of the Configuration

Pacemaker provides multiple ways to simplify the configuration XML by reusing
parts of it in multiple places.

Besides simplifying the XML, this also allows you to manipulate multiple
configuration elements with a single reference.

14.1. Reusing Resource Definitions

If you want to create lots of resources with similar configurations, defining a
resource template simplifies the task. Once defined, it can be referenced in
primitives or in certain types of constraints.

14.1.1. Configuring Resources with Templates

The primitives referencing the template will inherit all meta-attributes,
instance attributes, utilization attributes and operations defined
in the template. And you can define specific attributes and operations for any
of the primitives. If any of these are defined in both the template and the
primitive, the values defined in the primitive will take precedence over the
ones defined in the template.

Hence, resource templates help to reduce the amount of configuration work.
If any changes are needed, they can be done to the template definition and
will take effect globally in all resource definitions referencing that
template.

Resource templates have a syntax similar to that of primitives.

Resource template for a migratable Xen virtual machine

<template id="vm-template" class="ocf" provider="heartbeat" type="Xen">
 <meta_attributes id="vm-template-meta_attributes">
 <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/>
 </meta_attributes>
 <utilization id="vm-template-utilization">
 <nvpair id="vm-template-utilization-memory" name="memory" value="512"/>
 </utilization>
 <operations>
 <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
 <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>
 </operations>
</template>

Once you define a resource template, you can use it in primitives by specifying the
template property.

Xen primitive resource using a resource template

<primitive id="vm1" template="vm-template">
 <instance_attributes id="vm1-instance_attributes">
 <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
 <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/>
 </instance_attributes>
</primitive>

In the example above, the new primitive vm1 will inherit everything from vm-template. For
example, the equivalent of the above two examples would be:

Equivalent Xen primitive resource not using a resource template

<primitive id="vm1" class="ocf" provider="heartbeat" type="Xen">
 <meta_attributes id="vm-template-meta_attributes">
 <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/>
 </meta_attributes>
 <utilization id="vm-template-utilization">
 <nvpair id="vm-template-utilization-memory" name="memory" value="512"/>
 </utilization>
 <operations>
 <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
 <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>
 </operations>
 <instance_attributes id="vm1-instance_attributes">
 <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
 <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/>
 </instance_attributes>
</primitive>

If you want to overwrite some attributes or operations, add them to the
particular primitive’s definition.

Xen resource overriding template values

<primitive id="vm2" template="vm-template">
 <meta_attributes id="vm2-meta_attributes">
 <nvpair id="vm2-meta_attributes-allow-migrate" name="allow-migrate" value="false"/>
 </meta_attributes>
 <utilization id="vm2-utilization">
 <nvpair id="vm2-utilization-memory" name="memory" value="1024"/>
 </utilization>
 <instance_attributes id="vm2-instance_attributes">
 <nvpair id="vm2-instance_attributes-name" name="name" value="vm2"/>
 <nvpair id="vm2-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm2"/>
 </instance_attributes>
 <operations>
 <op id="vm2-monitor-30s" interval="30s" name="monitor" timeout="120s"/>
 <op id="vm2-stop-0" interval="0" name="stop" timeout="60s"/>
 </operations>
</primitive>

In the example above, the new primitive vm2 has special attribute values.
Its monitor operation has a longer timeout and interval, and
the primitive has an additional stop operation.

To see the resulting definition of a resource, run:

crm_resource --query-xml --resource vm2

To see the raw definition of a resource in the CIB, run:

crm_resource --query-xml-raw --resource vm2

14.1.2. Using Templates in Constraints

A resource template can be referenced in the following types of constraints:

	order constraints (see Specifying the Order in which Resources Should Start/Stop)

	colocation constraints (see Placing Resources Relative to other Resources)

	rsc_ticket constraints (for multi-site clusters as described in Configuring Ticket Dependencies)

Resource templates referenced in constraints stand for all primitives which are
derived from that template. This means, the constraint applies to all primitive
resources referencing the resource template. Referencing resource templates in
constraints is an alternative to resource sets and can simplify the cluster
configuration considerably.

For example, given the example templates earlier in this chapter:

<rsc_colocation id="vm-template-colo-base-rsc" rsc="vm-template" rsc-role="Started" with-rsc="base-rsc" score="INFINITY"/>

would colocate all VMs with base-rsc and is the equivalent of the following constraint configuration:

<rsc_colocation id="vm-colo-base-rsc" score="INFINITY">
 <resource_set id="vm-colo-base-rsc-0" sequential="false" role="Started">
 <resource_ref id="vm1"/>
 <resource_ref id="vm2"/>
 </resource_set>
 <resource_set id="vm-colo-base-rsc-1">
 <resource_ref id="base-rsc"/>
 </resource_set>
</rsc_colocation>

Note

In a colocation constraint, only one template may be referenced from either
rsc or with-rsc; the other reference must be a regular resource.

14.1.3. Using Templates in Resource Sets

Resource templates can also be referenced in resource sets.

For example, given the example templates earlier in this section, then:

<rsc_order id="order1" score="INFINITY">
 <resource_set id="order1-0">
 <resource_ref id="base-rsc"/>
 <resource_ref id="vm-template"/>
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

is the equivalent of the following constraint using a sequential resource set:

<rsc_order id="order1" score="INFINITY">
 <resource_set id="order1-0">
 <resource_ref id="base-rsc"/>
 <resource_ref id="vm1"/>
 <resource_ref id="vm2"/>
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

Or, if the resources referencing the template can run in parallel, then:

<rsc_order id="order2" score="INFINITY">
 <resource_set id="order2-0">
 <resource_ref id="base-rsc"/>
 </resource_set>
 <resource_set id="order2-1" sequential="false">
 <resource_ref id="vm-template"/>
 </resource_set>
 <resource_set id="order2-2">
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

is the equivalent of the following constraint configuration:

<rsc_order id="order2" score="INFINITY">
 <resource_set id="order2-0">
 <resource_ref id="base-rsc"/>
 </resource_set>
 <resource_set id="order2-1" sequential="false">
 <resource_ref id="vm1"/>
 <resource_ref id="vm2"/>
 </resource_set>
 <resource_set id="order2-2">
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

14.2. Reusing Rules, Options and Sets of Operations

Sometimes a number of constraints need to use the same set of rules,
and resources need to set the same options and parameters. To
simplify this situation, you can refer to an existing object using an
id-ref instead of an id.

So if for one resource you have

<rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>
 </rule>
</rsc_location>

Then instead of duplicating the rule for all your other resources, you can instead specify:

Referencing rules from other constraints

<rsc_location id="WebDB-connectivity" rsc="WebDB">
 <rule id-ref="ping-prefer-rule"/>
</rsc_location>

Important

The cluster will insist that the rule exists somewhere. Attempting
to add a reference to a nonexistent id will cause a validation failure,
as will attempting to remove a rule with an id that is referenced
elsewhere.

Some rule syntax is allowed only in
certain contexts. Validation cannot ensure that the
referenced rule is allowed in the context of the rule containing id-ref,
so such errors will be caught (and logged) only after the new configuration
is accepted. It is the administrator’s reponsibility to check for these.

The same principle applies for meta_attributes and
instance_attributes as illustrated in the example below:

Referencing attributes, options, and operations from other resources

<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
 <instance_attributes id="mySpecialRsc-attrs" score="1" >
 <nvpair id="default-interface" name="interface" value="eth0"/>
 <nvpair id="default-port" name="port" value="9999"/>
 </instance_attributes>
 <meta_attributes id="mySpecialRsc-options">
 <nvpair id="failure-timeout" name="failure-timeout" value="5m"/>
 <nvpair id="migration-threshold" name="migration-threshold" value="1"/>
 <nvpair id="stickiness" name="resource-stickiness" value="0"/>
 </meta_attributes>
 <operations id="health-checks">
 <op id="health-check" name="monitor" interval="60s"/>
 <op id="health-check" name="monitor" interval="30min"/>
 </operations>
</primitive>
<primitive id="myOtherRsc" class="ocf" type="Other" provider="me">
 <instance_attributes id-ref="mySpecialRsc-attrs"/>
 <meta_attributes id-ref="mySpecialRsc-options"/>
 <operations id-ref="health-checks"/>
</primitive>

id-ref can similarly be used with resource_set (in any constraint type),
nvpair, and operations.

14.3. Tagging Configuration Elements

Pacemaker allows you to tag any configuration element that has an XML ID.

The main purpose of tagging is to support higher-level user interface tools;
Pacemaker itself only uses tags within constraints. Therefore, what you can
do with tags mostly depends on the tools you use.

14.3.1. Configuring Tags

A tag is simply a named list of XML IDs.

Tag referencing three resources

<tags>
 <tag id="all-vms">
 <obj_ref id="vm1"/>
 <obj_ref id="vm2"/>
 <obj_ref id="vm3"/>
 </tag>
</tags>

What you can do with this new tag depends on what your higher-level tools
support. For example, a tool might allow you to enable or disable all of
the tagged resources at once, or show the status of just the tagged
resources.

A single configuration element can be listed in any number of tags.

Important

If listing nodes in a tag, you must list the node’s id, not name.

14.3.2. Using Tags in Constraints and Resource Sets

Pacemaker itself only uses tags in constraints. If you supply a tag name
instead of a resource name in any constraint, the constraint will apply to
all resources listed in that tag.

Constraint using a tag

<rsc_order id="order1" first="storage" then="all-vms" kind="Mandatory" />

In the example above, assuming the all-vms tag is defined as in the previous
example, the constraint will behave the same as:

Equivalent constraints without tags

<rsc_order id="order1-1" first="storage" then="vm1" kind="Mandatory" />
<rsc_order id="order1-2" first="storage" then="vm2" kind="Mandatory" />
<rsc_order id="order1-3" first="storage" then="vm3" kind="Mandatory" />

A tag may be used directly in the constraint, or indirectly by being
listed in a resource set used in the constraint.
When used in a resource set, an expanded tag will honor the set’s
sequential property.

14.3.3. Filtering With Tags

The crm_mon tool can be used to display lots of information about the
state of the cluster. On large or complicated clusters, this can include
a lot of information, which makes it difficult to find the one thing you
are interested in. The --resource= and --node= command line
options can be used to filter results. In their most basic usage, these
options take a single resource or node name. However, they can also
be supplied with a tag name to display several objects at once.

For instance, given the following CIB section:

<resources>
 <primitive class="stonith" id="Fencing" type="fence_xvm"/>
 <primitive class="ocf" id="dummy" provider="pacemaker" type="Dummy"/>
 <group id="inactive-group">
 <primitive class="ocf" id="inactive-dummy-1" provider="pacemaker" type="Dummy"/>
 <primitive class="ocf" id="inactive-dummy-2" provider="pacemaker" type="Dummy"/>
 </group>
 <clone id="inactive-clone">
 <primitive id="inactive-dhcpd" class="systemd" type="dhcpd"/>
 </clone>
</resources>
<tags>
 <tag id="inactive-rscs">
 <obj_ref id="inactive-group"/>
 <obj_ref id="inactive-clone"/>
 </tag>
</tags>

The following would be output for crm_mon --resource=inactive-rscs -r:

Cluster Summary:
 * Stack: corosync
 * Current DC: cluster02 (version 2.0.4-1.e97f9675f.git.el7-e97f9675f) - partition with quorum
 * Last updated: Tue Oct 20 16:09:01 2020
 * Last change: Tue May 5 12:04:36 2020 by hacluster via crmd on cluster01
 * 5 nodes configured
 * 27 resource instances configured (4 DISABLED)

Node List:
 * Online: [cluster01 cluster02]

Full List of Resources:
 * Clone Set: inactive-clone [inactive-dhcpd] (disabled):
 * Stopped (disabled): [cluster01 cluster02]
 * Resource Group: inactive-group (disabled):
 * inactive-dummy-1 (ocf::pacemaker:Dummy): Stopped (disabled)
 * inactive-dummy-2 (ocf::pacemaker:Dummy): Stopped (disabled)

15. Status

Pacemaker automatically generates a status section in the CIB (inside the
cib element, at the same level as configuration). The status is
transient, and is not stored to disk with the rest of the CIB.

The section’s structure and contents are internal to Pacemaker and subject to
change from release to release. Its often obscure element and attribute names
are kept for historical reasons, to maintain compatibility with older versions
during rolling upgrades.

Users should not modify the section directly, though various command-line tool
options affect it indirectly.

15.1. Node State

The status element contains node_state elements for each node in the
cluster (and potentially nodes that have been removed from the configuration
since the cluster started). The node_state element has attributes that
allow the cluster to determine whether the node is healthy.

Example minimal node state entry

<node_state id="1" uname="cl-virt-1" in_ccm="1721760952" crmd="1721760952" crm-debug-origin="controld_update_resource_history" join="member" expected="member">
 <transient_attributes id="1"/>
 <lrm id="1"/>
</node_state>

Attributes of a node_state Element

	Name

	Type

	Description

	id

	text

	Node ID (identical to id of corresponding node element in the
configuration section)

	uname

	text

	Node name (identical to uname of corresponding node element in the
configuration section)

	in_ccm

	epoch time (since 2.1.7; previously boolean)

	If the node’s controller is currently in the cluster layer’s membership,
this is the epoch time at which it joined (or 1 if the node is in the
process of leaving the cluster), otherwise 0 (since 2.1.7; previously,
it was “true” or “false”)

	crmd

	epoch time (since 2.1.7; previously an enumeration)

	If the node’s controller is currently in the cluster layer’s controller
messaging group, this is the epoch time at which it joined, otherwise 0
(since 2.1.7; previously, the value was either “online” or “offline”)

	crm-debug-origin

	text

	Name of the source code function that recorded this node_state
element (for debugging)

	join

	enumeration

	Current status of node’s controller join sequence (and thus whether it
is eligible to run resources). Allowed values:

	down: Not yet joined

	pending: In the process of joining or leaving

	member: Fully joined

	banned: Rejected by DC

	expected

	enumeration

	What cluster expects join to be in the immediate future. Allowed
values are same as for join.

15.2. Transient Node Attributes

The transient_attributes section specifies transient
Node Attributes. In addition to any values set by the administrator or
resource agents using the attrd_updater or crm_attribute tools, the
cluster stores various state information here.

Example transient node attributes for a node

<transient_attributes id="cl-virt-1">
 <instance_attributes id="status-cl-virt-1">
 <nvpair id="status-cl-virt-1-pingd" name="pingd" value="3"/>
 <nvpair id="status-cl-virt-1-fail-count-pingd:0.monitor_30000" name="fail-count-pingd:0#monitor_30000" value="1"/>
 <nvpair id="status-cl-virt-1-last-failure-pingd:0" name="last-failure-pingd:0" value="1239009742"/>
 </instance_attributes>
</transient_attributes>

15.3. Node History

Each node_state element contains an lrm element with a history of
certain resource actions performed on the node. The lrm element contains an
lrm_resources element.

15.3.1. Resource History

The lrm_resources element contains an lrm_resource element for each
resource that has had an action performed on the node.

An lrm_resource entry has attributes allowing the cluster to stop the
resource safely even if it is removed from the configuration. Specifically, the
resource’s id, class, type and provider are recorded.

15.3.2. Action History

Each lrm_resource element contains an lrm_rsc_op element for each
recorded action performed for that resource on that node. (Not all actions are
recorded, just enough to determine the resource’s state.)

Attributes of an lrm_rsc_op element

	Name

	Type

	Description

	id

	text

	Identifier for the history entry constructed from the resource ID,
action name or history entry type, and action interval.

	operation_key

	text

	Identifier for the action that was executed, constructed from the
resource ID, action name, and action interval.

	operation

	text

	The name of the action the history entry is for

	crm-debug-origin

	text

	Name of the source code function that recorded this entry (for
debugging)

	crm_feature_set

	version

	The Pacemaker feature set used to record this entry.

	transition-key

	text

	A concatenation of the action’s transition graph action number, the
transition graph number, the action’s expected result, and the UUID of
the controller instance that scheduled it.

	transition-magic

	text

	A concatenation of op-status, rc-code, and transition-key.

	exit-reason

	text

	An error message (if available) from the resource agent or Pacemaker if
the action did not return success.

	on_node

	text

	The name of the node that executed the action (identical to the
uname of the enclosing node_state element)

	call-id

	integer

	A node-specific counter used to determine the order in which actions
were executed.

	rc-code

	integer

	The resource agent’s exit status for this action. Refer to the Resource
Agents chapter of Pacemaker Administration for how these values are
interpreted.

	op-status

	integer

	The execution status of this action. The meanings of these codes are
internal to Pacemaker.

	interval

	nonnegative integer

	If the action is recurring, its frequency (in milliseconds), otherwise
0.

	last-rc-change

	epoch time

	Node-local time at which the action first returned the current value of
rc-code.

	exec-time

	integer

	Time (in seconds) that action execution took (if known)

	queue-time

	integer

	Time (in seconds) that action was queued in the local executor (if known)

	op-digest

	text

	If present, this is a hash of the parameters passed to the action. If a
hash of the currently configured parameters does not match this, that
means the resource configuration changed since the action was performed,
and the resource must be reloaded or restarted.

	op-restart-digest

	text

	If present, the resource agent supports reloadable parameters, and this
is a hash of the non-reloadable parameters passed to the action. This
allows the cluster to choose between reload and restart when one is
needed.

	op-secure-digest

	text

	If present, the resource agent marks some parameters as sensitive, and
this is a hash of the non-sensitive parameters passed to the action.
This allows the value of sensitive parameters to be removed from a saved
copy of the CIB while still allowing scheduler simulations to be
performed on that copy.

15.3.3. Simple Operation History Example

A monitor operation (determines current state of the apcstonith resource)

<lrm_resource id="apcstonith" type="fence_apc_snmp" class="stonith">
 <lrm_rsc_op id="apcstonith_monitor_0" operation="monitor" call-id="2"
 rc-code="7" op-status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 op-digest="2e3da9274d3550dc6526fb24bfcbcba0"
 transition-key="22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 transition-magic="0:7;22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-rc-change="1239008085" exec-time="10" queue-time="0"/>
</lrm_resource>

The above example shows the history entry for a probe (non-recurring monitor
operation) for the apcstonith resource.

The cluster schedules probes for every configured resource on a node when
the node first starts, in order to determine the resource’s current state
before it takes any further action.

From the transition-key, we can see that this was the 22nd action of
the 2nd graph produced by this instance of the controller
(2668bbeb-06d5-40f9-936d-24cb7f87006a).

The third field of the transition-key contains a 7, which indicates
that the cluster expects to find the resource inactive. By looking at the
rc-code property, we see that this was the case.

As that is the only action recorded for this node, we can conclude that
the cluster started the resource elsewhere.

15.3.4. Complex Operation History Example

Resource history of a pingd clone with multiple entries

<lrm_resource id="pingd:0" type="pingd" class="ocf" provider="pacemaker">
 <lrm_rsc_op id="pingd:0_monitor_30000" operation="monitor" call-id="34"
 rc-code="0" op-status="0" interval="30000"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 transition-key="10:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-rc-change="1239009741" exec-time="10" queue-time="0"/>
 <lrm_rsc_op id="pingd:0_stop_0" operation="stop"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" call-id="32"
 rc-code="0" op-status="0" interval="0"
 transition-key="11:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-rc-change="1239009741" exec-time="10" queue-time="0"/>
 <lrm_rsc_op id="pingd:0_start_0" operation="start" call-id="33"
 rc-code="0" op-status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 transition-key="31:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-rc-change="1239009741" exec-time="10" queue-time="0" />
 <lrm_rsc_op id="pingd:0_monitor_0" operation="monitor" call-id="3"
 rc-code="0" op-status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 transition-key="23:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-rc-change="1239008085" exec-time="20" queue-time="0"/>
 </lrm_resource>

When more than one history entry exists, it is important to first sort
them by call-id before interpreting them.

Once sorted, the above example can be summarized as:

	A non-recurring monitor operation returning 7 (not running), with a
call-id of 3

	A stop operation returning 0 (success), with a call-id of 32

	A start operation returning 0 (success), with a call-id of 33

	A recurring monitor returning 0 (success), with a call-id of 34

The cluster processes each history entry to build up a picture of the
resource’s state. After the first and second entries, it is
considered stopped, and after the third it considered active.

Based on the last operation, we can tell that the resource is
currently active.

Additionally, from the presence of a stop operation with a lower
call-id than that of the start operation, we can conclude that the
resource has been restarted. Specifically this occurred as part of
actions 11 and 31 of transition 11 from the controller instance with the key
2668bbeb.... This information can be helpful for locating the
relevant section of the logs when looking for the source of a failure.

16. Multi-Site Clusters and Tickets

Apart from local clusters, Pacemaker also supports multi-site clusters.
That means you can have multiple, geographically dispersed sites, each with a
local cluster. Failover between these clusters can be coordinated
manually by the administrator, or automatically by a higher-level entity called
a Cluster Ticket Registry (CTR).

16.1. Challenges for Multi-Site Clusters

Typically, multi-site environments are too far apart to support
synchronous communication and data replication between the sites.
That leads to significant challenges:

	How do we make sure that a cluster site is up and running?

	How do we make sure that resources are only started once?

	How do we make sure that quorum can be reached between the different
sites and a split-brain scenario avoided?

	How do we manage failover between sites?

	How do we deal with high latency in case of resources that need to be
stopped?

In the following sections, learn how to meet these challenges.

16.2. Conceptual Overview

Multi-site clusters can be considered as “overlay” clusters where
each cluster site corresponds to a cluster node in a traditional cluster.
The overlay cluster can be managed by a CTR in order to
guarantee that any cluster resource will be active
on no more than one cluster site. This is achieved by using
tickets that are treated as failover domain between cluster
sites, in case a site should be down.

The following sections explain the individual components and mechanisms
that were introduced for multi-site clusters in more detail.

16.2.1. Ticket

Tickets are, essentially, cluster-wide attributes. A ticket grants the
right to run certain resources on a specific cluster site. Resources can
be bound to a certain ticket by rsc_ticket constraints. Only if the
ticket is available at a site can the respective resources be started there.
Vice versa, if the ticket is revoked, the resources depending on that
ticket must be stopped.

The ticket thus is similar to a site quorum, i.e. the permission to
manage/own resources associated with that site. (One can also think of the
current have-quorum flag as a special, cluster-wide ticket that is
granted in case of node majority.)

Tickets can be granted and revoked either manually by administrators
(which could be the default for classic enterprise clusters), or via
the automated CTR mechanism described below.

A ticket can only be owned by one site at a time. Initially, none
of the sites has a ticket. Each ticket must be granted once by the cluster
administrator.

The presence or absence of tickets for a site is stored in the CIB as a
cluster status. With regards to a certain ticket, there are only two states
for a site: true (the site has the ticket) or false (the site does
not have the ticket). The absence of a certain ticket (during the initial
state of the multi-site cluster) is the same as the value false.

16.2.2. Dead Man Dependency

A site can only activate resources safely if it can be sure that the
other site has deactivated them. However after a ticket is revoked, it can
take a long time until all resources depending on that ticket are stopped
“cleanly”, especially in case of cascaded resources. To cut that process
short, the concept of a Dead Man Dependency was introduced.

If a dead man dependency is in force, if a ticket is revoked from a site, the
nodes that are hosting dependent resources are fenced. This considerably speeds
up the recovery process of the cluster and makes sure that resources can be
migrated more quickly.

This can be configured by specifying a loss-policy="fence" in
rsc_ticket constraints.

16.2.3. Cluster Ticket Registry

A CTR is a coordinated group of network daemons that automatically handles
granting, revoking, and timing out tickets (instead of the administrator
revoking the ticket somewhere, waiting for everything to stop, and then
granting it on the desired site).

Pacemaker does not implement its own CTR, but interoperates with external
software designed for that purpose (similar to how resource and fencing agents
are not directly part of pacemaker).

Participating clusters run the CTR daemons, which connect to each other, exchange
information about their connectivity, and vote on which sites gets which
tickets.

A ticket is granted to a site only once the CTR is sure that the ticket
has been relinquished by the previous owner, implemented via a timer in most
scenarios. If a site loses connection to its peers, its tickets time out and
recovery occurs. After the connection timeout plus the recovery timeout has
passed, the other sites are allowed to re-acquire the ticket and start the
resources again.

This can also be thought of as a “quorum server”, except that it is not
a single quorum ticket, but several.

16.2.4. Configuration Replication

As usual, the CIB is synchronized within each cluster, but it is not synchronized
across cluster sites of a multi-site cluster. You have to configure the resources
that will be highly available across the multi-site cluster for every site
accordingly.

16.3. Configuring Ticket Dependencies

The rsc_ticket constraint lets you specify the resources depending on a certain
ticket. Together with the constraint, you can set a loss-policy that defines
what should happen to the respective resources if the ticket is revoked.

The attribute loss-policy can have the following values:

	fence: Fence the nodes that are running the relevant resources.

	stop: Stop the relevant resources.

	freeze: Do nothing to the relevant resources.

	demote: Demote relevant resources that are running in the promoted role.

Constraint that fences node if ticketA is revoked

<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" ticket="ticketA" loss-policy="fence"/>

The example above creates a constraint with the ID rsc1-req-ticketA. It
defines that the resource rsc1 depends on ticketA and that the node running
the resource should be fenced if ticketA is revoked.

If resource rsc1 were a promotable resource, you might want to configure
that only being in the promoted role depends on ticketA. With the following
configuration, rsc1 will be demoted if ticketA is revoked:

Constraint that demotes rsc1 if ticketA is revoked

<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" rsc-role="Promoted" ticket="ticketA" loss-policy="demote"/>

You can create multiple rsc_ticket constraints to let multiple resources
depend on the same ticket. However, rsc_ticket also supports resource sets
(see Resource Sets), so one can easily list all the resources in one
rsc_ticket constraint instead.

Ticket constraint for multiple resources

<rsc_ticket id="resources-dep-ticketA" ticket="ticketA" loss-policy="fence">
 <resource_set id="resources-dep-ticketA-0" role="Started">
 <resource_ref id="rsc1"/>
 <resource_ref id="group1"/>
 <resource_ref id="clone1"/>
 </resource_set>
 <resource_set id="resources-dep-ticketA-1" role="Promoted">
 <resource_ref id="ms1"/>
 </resource_set>
</rsc_ticket>

In the example above, there are two resource sets, so we can list resources
with different roles in a single rsc_ticket constraint. There’s no dependency
between the two resource sets, and there’s no dependency among the
resources within a resource set. Each of the resources just depends on
ticketA.

Referencing resource templates in rsc_ticket constraints, and even
referencing them within resource sets, is also supported.

If you want other resources to depend on further tickets, create as many
constraints as necessary with rsc_ticket.

16.4. Managing Multi-Site Clusters

16.4.1. Granting and Revoking Tickets Manually

You can grant tickets to sites or revoke them from sites manually.
If you want to re-distribute a ticket, you should wait for
the dependent resources to stop cleanly at the previous site before you
grant the ticket to the new site.

Use the crm_ticket command line tool to grant and revoke tickets.

To grant a ticket to this site:

crm_ticket --ticket ticketA --grant

To revoke a ticket from this site:

crm_ticket --ticket ticketA --revoke

Important

If you are managing tickets manually, use the crm_ticket command with
great care, because it cannot check whether the same ticket is already
granted elsewhere.

16.4.2. Granting and Revoking Tickets via a Cluster Ticket Registry

We will use Booth [https://github.com/ClusterLabs/booth] here as an example of
software that can be used with pacemaker as a Cluster Ticket Registry. Booth
implements the Raft [http://en.wikipedia.org/wiki/Raft_%28computer_science%29]
algorithm to guarantee the distributed consensus among different
cluster sites, and manages the ticket distribution (and thus the failover
process between sites).

Each of the participating clusters and arbitrators runs the Booth daemon
boothd.

An arbitrator is the multi-site equivalent of a quorum-only node in a local
cluster. If you have a setup with an even number of sites,
you need an additional instance to reach consensus about decisions such
as failover of resources across sites. In this case, add one or more
arbitrators running at additional sites. Arbitrators are single machines
that run a booth instance in a special mode. An arbitrator is especially
important for a two-site scenario, otherwise there is no way for one site
to distinguish between a network failure between it and the other site, and
a failure of the other site.

The most common multi-site scenario is probably a multi-site cluster with two
sites and a single arbitrator on a third site. However, technically, there are
no limitations with regards to the number of sites and the number of
arbitrators involved.

Boothd at each site connects to its peers running at the other sites and
exchanges connectivity details. Once a ticket is granted to a site, the
booth mechanism will manage the ticket automatically: If the site which
holds the ticket is out of service, the booth daemons will vote which
of the other sites will get the ticket. To protect against brief
connection failures, sites that lose the vote (either explicitly or
implicitly by being disconnected from the voting body) need to
relinquish the ticket after a time-out. Thus, it is made sure that a
ticket will only be re-distributed after it has been relinquished by the
previous site. The resources that depend on that ticket will fail over
to the new site holding the ticket. The nodes that have run the
resources before will be treated according to the loss-policy you set
within the rsc_ticket constraint.

Before the booth can manage a certain ticket within the multi-site cluster,
you initially need to grant it to a site manually via the booth command-line
tool. After you have initially granted a ticket to a site, boothd
will take over and manage the ticket automatically.

Important

The booth command-line tool can be used to grant, list, or
revoke tickets and can be run on any machine where boothd is running.
If you are managing tickets via Booth, use only booth for manual
intervention, not crm_ticket. That ensures the same ticket
will only be owned by one cluster site at a time.

16.4.2.1. Booth Requirements

	All clusters that will be part of the multi-site cluster must be based on
Pacemaker.

	Booth must be installed on all cluster nodes and on all arbitrators that will
be part of the multi-site cluster.

	Nodes belonging to the same cluster site should be synchronized via NTP. However,
time synchronization is not required between the individual cluster sites.

16.4.3. General Management of Tickets

Display the information of tickets:

crm_ticket --info

Or you can monitor them with:

crm_mon --tickets

Display the rsc_ticket constraints that apply to a ticket:

crm_ticket --ticket ticketA --constraints

When you want to do maintenance or manual switch-over of a ticket,
revoking the ticket would trigger the loss policies. If
loss-policy="fence", the dependent resources could not be gracefully
stopped/demoted, and other unrelated resources could even be affected.

The proper way is making the ticket standby first with:

crm_ticket --ticket ticketA --standby

Then the dependent resources will be stopped or demoted gracefully without
triggering the loss policies.

If you have finished the maintenance and want to activate the ticket again,
you can run:

crm_ticket --ticket ticketA --activate

16.5. For more information

	SUSE’s Geo Clustering quick start [https://www.suse.com/documentation/sle-ha-geo-12/art_ha_geo_quick/data/art_ha_geo_quick.html]

	Booth [https://github.com/ClusterLabs/booth]

17. Sample Configurations

17.1. Empty

An Empty Configuration

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
</cib>

17.2. Simple

A simple configuration with two nodes, some cluster options and a resource

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="option-1" name="symmetric-cluster" value="true"/>
 <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
 <nvpair id="option-3" name="stonith-enabled" value="0"/>
 </cluster_property_set>
 </crm_config>
 <nodes>
 <node id="xxx" uname="c001n01" type="normal"/>
 <node id="yyy" uname="c001n02" type="normal"/>
 </nodes>
 <resources>
 <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
 <operations>
 <op id="myAddr-monitor" name="monitor" interval="300s"/>
 </operations>
 <instance_attributes id="myAddr-params">
 <nvpair id="myAddr-ip" name="ip" value="192.0.2.10"/>
 </instance_attributes>
 </primitive>
 </resources>
 <constraints>
 <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01" score="INFINITY"/>
 </constraints>
 <rsc_defaults>
 <meta_attributes id="rsc_defaults-options">
 <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
 <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
 </meta_attributes>
 </rsc_defaults>
 <op_defaults>
 <meta_attributes id="op_defaults-options">
 <nvpair id="op-default-1" name="timeout" value="30s"/>
 </meta_attributes>
 </op_defaults>
 </configuration>
 <status/>
</cib>

In the above example, we have one resource (an IP address) that we check
every five minutes and will run on host c001n01 until either the
resource fails 10 times or the host shuts down.

17.3. Advanced Configuration

An advanced configuration with groups, clones and STONITH

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="option-1" name="symmetric-cluster" value="true"/>
 <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
 <nvpair id="option-3" name="stonith-enabled" value="true"/>
 </cluster_property_set>
 </crm_config>
 <nodes>
 <node id="xxx" uname="c001n01" type="normal"/>
 <node id="yyy" uname="c001n02" type="normal"/>
 <node id="zzz" uname="c001n03" type="normal"/>
 </nodes>
 <resources>
 <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
 <operations>
 <op id="myAddr-monitor" name="monitor" interval="300s"/>
 </operations>
 <instance_attributes id="myAddr-attrs">
 <nvpair id="myAddr-attr-1" name="ip" value="192.0.2.10"/>
 </instance_attributes>
 </primitive>
 <group id="myGroup">
 <primitive id="database" class="systemd" type="mariadb">
 <operations>
 <op id="database-monitor" name="monitor" interval="300s"/>
 </operations>
 </primitive>
 <primitive id="webserver" class="systemd" type="httpd">
 <operations>
 <op id="webserver-monitor" name="monitor" interval="300s"/>
 </operations>
 </primitive>
 </group>
 <clone id="STONITH">
 <meta_attributes id="stonith-options">
 <nvpair id="stonith-option-1" name="globally-unique" value="false"/>
 </meta_attributes>
 <primitive id="stonithclone" class="stonith" type="external/ssh">
 <operations>
 <op id="stonith-op-mon" name="monitor" interval="5s"/>
 </operations>
 <instance_attributes id="stonith-attrs">
 <nvpair id="stonith-attr-1" name="hostlist" value="c001n01,c001n02"/>
 </instance_attributes>
 </primitive>
 </clone>
 </resources>
 <constraints>
 <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01"
 score="INFINITY"/>
 <rsc_colocation id="group-with-ip" rsc="myGroup" with-rsc="myAddr"
 score="INFINITY"/>
 </constraints>
 <op_defaults>
 <meta_attributes id="op_defaults-options">
 <nvpair id="op-default-1" name="timeout" value="30s"/>
 </meta_attributes>
 </op_defaults>
 <rsc_defaults>
 <meta_attributes id="rsc_defaults-options">
 <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
 <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
 </meta_attributes>
 </rsc_defaults>
 </configuration>
 <status/>
</cib>

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

Symbols

 	
 	
 #digests

 	node attribute

 	
 	
 #node-unfenced

 	node attribute

A

 	
 	Access Control List (ACL)

 	acl_group

 	acl_permission

 	acl_role

 	acl_target

 	acls

 	role

 	
 acl_group

 	XML element

 	id (attribute)

 	name (attribute)

 	
 acl_permission

 	XML element

 	attribute (attribute)

 	description (attribute), [1]

 	id (attribute)

 	kind (attribute)

 	object-type (attribute)

 	reference (attribute)

 	xpath (attribute)

 	
 acl_role

 	XML element

 	description (attribute)

 	id (attribute)

 	
 acl_target

 	XML element

 	id (attribute)

 	name (attribute)

 	
 acls

 	XML element

 	
 action

 	history

 	property, description

 	property, enabled

 	property, id

 	property, interval

 	property, interval-origin

 	property, name

 	property, on-fail

 	property, record-pending

 	property, role

 	property, start-delay

 	property, timeout

 	resource_set attribute

 	
 add-host

 	network attribute

 	
 admin_epoch

 	cib

 	
 agent

 	alert

 	alert

 	XML element

 	agent

 	filters

 	instance attributes

 	meta-attribute, enabled

 	meta-attribute, timeout

 	meta-attribute, timestamp-format

 	meta-attributes

 	recipient

 	
 alerts

 	XML element

 	
 allow-migrate

 	resource option

 	
 allow-unhealthy-nodes

 	resource option

 	Asymmetrical Clusters

 	
 attribute

 	XML element

 	acl_permission attribute

 	action (resource_set)

 	add-host (network)

 	attribute (acl_permission)

 	control-port (network)

 	description (acl_permission), [1]

 	description (acl_role)

 	description (bundle)

 	description (clone)

 	description (group)

 	expression

 	first (rsc_order)

 	first-action (rsc_order)

 	host-interface (network)

 	host-netmask (network)

 	id (acl_group)

 	id (acl_permission)

 	id (acl_role)

 	id (acl_target)

 	id (bundle)

 	id (cluster_property_set)

 	id (instance_attributes)

 	id (meta_attributes)

 	id (port-mapping)

 	id (resource_set)

 	id (role)

 	id (rsc_colocation)

 	id (rsc_location)

 	id (rsc_order)

 	id (storage-mapping)

 	id (utilization)

 	image (docker)

 	image (podman)

 	influence (rsc_colocation)

 	internal-port (port-mapping)

 	ip-range-start (network)

 	kind (acl_permission)

 	kind (resource_set)

 	kind (rsc_order)

 	name (acl_group)

 	name (acl_target)

 	network (docker)

 	network (podman)

 	node (rsc_location)

 	node-attribute (rsc_colocation)

 	object-type (acl_permission)

 	options (docker)

 	options (podman)

 	options (storage-mapping)

 	port (port-mapping)

 	promoted-max (docker)

 	promoted-max (podman)

 	range (port-mapping)

 	reference (acl_permission)

 	replicas (docker)

 	replicas (podman)

 	replicas-per-host (docker)

 	replicas-per-host (podman)

 	require-all (resource_set)

 	resource-discovery (rsc_location)

 	role (resource_set)

 	role (rsc_location)

 	rsc (rsc_colocation)

 	rsc (rsc_location)

 	rsc-pattern (rsc_location)

 	run-command (docker)

 	run-command (podman)

 	score (cluster_property_set)

 	score (instance_attributes)

 	score (meta_attributes)

 	score (resource_set)

 	score (rsc_colocation)

 	score (rsc_location)

 	score (utilization)

 	sequential (resource_set)

 	source-dir (storage-mapping)

 	source-dir-root (storage-mapping)

 	symmetrical (rsc)order)

 	target-dir (storage-mapping)

 	then (rsc_order)

 	then-action (rsc_order)

 	with-rsc (rsc_colocation)

 	xpath (acl_permission)

B

 	
 	
 batch-limit

 	cluster option

 	
 boolean

 	type

 	
 boolean-op

 	rule

 	
 bundle

 	XML element

 	attribute, description

 	attribute, id

 	meta-attributes

 	network

 	node attributes

 	primitive

C

 	
 	
 call-id

 	lrm_rsc_op

 	
 cib

 	XML element

 	admin_epoch

 	cib-last-written

 	dc-uuid

 	epoch

 	execution-date

 	have-quorum

 	num_updates

 	remote-clear-port

 	remote-tls-port

 	validate-with

 	
 cib-last-written

 	cib

 	
 CIB_pam_service

 	node option

 	
 class

 	resource

 	rsc_expression

 	clone

 	XML element

 	attribute, description

 	constraint

 	option, clone-max

 	option, clone-min

 	option, clone-node-max

 	option, globally-unique

 	option, interleave

 	option, notify

 	option, ordered

 	option, promotable

 	option, promoted-max

 	option, promoted-node-max

 	options

 	ordering constraint, rsc-role

 	ordering constraint, with-rsc-role

 	property, id

 	resource-stickiness

 	
 clone-max

 	clone option

 	
 clone-min

 	clone option

 	
 clone-node-max

 	clone option

 	
 cluster option

 	batch-limit

 	cluster-delay

 	cluster-infrastructure

 	cluster-ipc-limit

 	cluster-name

 	cluster-recheck-interval

 	concurrent-fencing

 	dc-deadtime

 	dc-version

 	election-timeout

 	enable-acl

 	enable-startup-probes

 	fence-reaction

 	have-watchdog

 	join-finalization-timeout

 	join-integration-timeout

 	load-threshold

 	maintenance-mode

 	migration-limit

 	no-quorum-policy

 	node-action-limit

 	node-health-base

 	node-health-green

 	node-health-red

 	node-health-strategy, [1]

 	node-health-yellow

 	node-pending-timeout

 	pe-error-series-max

 	pe-input-series-max

 	pe-warn-series-max

 	placement-strategy

 	priority-fencing-delay

 	rule, [1]

 	shutdown-escalation

 	shutdown-lock

 	shutdown-lock-limit

 	start-failure-is-fatal

 	startup-fencing

 	stonith-action

 	stonith-enabled

 	stonith-max-attempts

 	stonith-timeout

 	stonith-watchdog-timeout

 	stop-all-resources

 	stop-orphan-actions

 	stop-orphan-resources

 	symmetric-cluster

 	transition-delay

 	
 	
 cluster-delay

 	cluster option

 	
 cluster-infrastructure

 	cluster option

 	
 cluster-ipc-limit

 	cluster option

 	
 cluster-name

 	cluster option

 	
 cluster-recheck-interval

 	cluster option

 	
 cluster_property_set

 	id

 	score

 	colocation

 	
 concurrent-fencing

 	cluster option

 	
 configuration

 	XML element, [1]

 	constraint

 	colocation

 	location

 	ordering

 	resource set

 	rsc_colocation

 	rsc_location

 	rsc_order

 	
 container-attribute-target

 	resource option

 	
 control-port

 	network attribute

 	
 critical

 	resource option

 	
 crm-debug-origin

 	lrm_rsc_op

 	node_state

 	
 crm_feature_set

 	lrm_rsc_op

 	
 crmd

 	node_state

 	
 custom

 	node-health-strategy value

D

 	
 	date specification

 	
 date/time

 	type

 	
 date_expression

 	XML element

 	end

 	id

 	operation

 	start

 	
 date_spec

 	XML element

 	hours

 	id

 	minutes

 	monthdays

 	months

 	moon

 	seconds

 	weekdays

 	weeks

 	weekyears

 	yeardays

 	years

 	
 days

 	duration

 	
 dc-deadtime

 	cluster option

 	
 dc-uuid

 	cib

 	
 dc-version

 	cluster option

 	
 	
 description

 	acl_permission attribute, [1]

 	acl_role attribute

 	action property

 	bundle attribute

 	clone attribute

 	group attribute

 	op

 	resource

 	
 devices

 	fencing-level

 	
 docker

 	XML element

 	attribute, image

 	attribute, network

 	attribute, options

 	attribute, promoted-max

 	attribute, replicas

 	attribute, replicas-per-host

 	attribute, run-command

 	duration

 	XML element

 	days

 	hours

 	id

 	minutes

 	months

 	seconds

 	type

 	weeks

 	years

E

 	
 	
 election-timeout

 	cluster option

 	
 enable-acl

 	cluster option

 	
 enable-startup-probes

 	cluster option

 	
 enabled

 	action property

 	alert meta-attribute

 	op

 	
 end

 	date_expression

 	
 enumeration

 	type

 	
 epoch

 	cib

 	
 epoch_time

 	type

 	
 	
 exec-time

 	lrm_rsc_op

 	
 execution-date

 	cib

 	
 exit-reason

 	lrm_rsc_op

 	
 expected

 	node_state

 	
 expression

 	XML element

 	attribute

 	id

 	operation

 	type

 	value

 	value-source

F

 	
 	
 fail-count

 	node attribute

 	
 failure-timeout

 	resource option

 	
 fence-reaction

 	cluster option

 	fencing

 	agent

 	alert

 	configuration

 	device

 	special instance attributes

 	topology

 	unfencing

 	why necessary

 	
 	fencing-level

 	devices

 	id

 	index

 	target

 	target-attribute

 	target-pattern

 	target-value

 	fencing-topology

 	
 first

 	rsc_order attribute

 	
 first-action

 	rsc_order attribute, [1]

G

 	
 	
 globally-unique

 	clone option

 	
 green

 	node health attribute value

 	
 group

 	XML element

 	attribute, description

 	property, id

 	resource-stickiness

 	
 	guest node

H

 	
 	
 have-quorum

 	cib

 	
 have-watchdog

 	cluster option

 	
 history

 	action

 	node

 	resource

 	
 	
 host-interface

 	network attribute

 	
 host-netmask

 	network attribute

 	
 hours

 	date_spec

 	duration

I

 	
 	
 id

 	acl_group attribute

 	acl_permission attribute

 	acl_role attribute

 	acl_target attribute

 	action property

 	bundle attribute

 	clone property

 	cluster_property_set

 	date_expression

 	date_spec

 	duration

 	expression

 	fencing-level

 	group property

 	instance_attributes

 	lrm_rsc_op

 	meta_attributes

 	node_state

 	op

 	op_expression

 	port-mapping attribute

 	resource

 	resource_set attribute

 	role attribute

 	rsc_colocation attribute

 	rsc_expression

 	rsc_location attribute

 	rsc_order attribute

 	rule

 	storage-mapping attribute

 	type

 	utilization

 	
 image

 	docker attribute

 	podman attribute

 	
 	
 in_ccm

 	node_state

 	
 index

 	fencing-level

 	
 influence

 	rsc_colocation attribute

 	
 instance attribute

 	alert instance attributes

 	rule

 	
 instance_attributes

 	id

 	score

 	
 integer

 	type

 	
 interleave

 	clone option

 	
 internal-port

 	port-mapping attribute

 	
 interval

 	action property

 	lrm_rsc_op

 	op

 	op_expression

 	
 interval-origin

 	action property

 	op

 	
 ip-range-start

 	network attribute

 	
 is-managed

 	resource option

 	
 iso8601

 	type

J

 	
 	
 join

 	node_state

 	
 join-finalization-timeout

 	cluster option

 	
 	
 join-integration-timeout

 	cluster option

K

 	
 	
 kind

 	acl_permission attribute

 	resource_set attribute

 	rsc_order attribute

L

 	
 	
 last-failure

 	node attribute

 	
 last-rc-change

 	lrm_rsc_op

 	
 Linux Standard Base

 	resources

 	
 load-threshold

 	cluster option

 	location constraint

 	rule

 	
 lrm

 	XML element

 	
 lrm_resource

 	XML element

 	
 lrm_resources

 	XML element

 	
 lrm_rsc_op

 	XML element

 	call-id

 	crm-debug-origin

 	crm_feature_set

 	exec-time

 	exit-reason

 	id

 	interval

 	last-rc-change

 	on_node

 	op-digest

 	op-restart-digest

 	op-secure-digest

 	op-status

 	operation

 	operation_key

 	queue-time

 	rc-code

 	transition-key

 	transition-magic

 	
 	
 LSB

 	resources

M

 	
 	
 maintenance

 	node attribute

 	resource option

 	
 maintenance-mode

 	cluster option

 	
 meta-attribute

 	alert meta-attributes

 	enabled (alert)

 	rule

 	timeout (alert)

 	timestamp-format (alert)

 	
 meta_attributes

 	id

 	score

 	
 migrate-on-red

 	node-health-strategy value

 	
 	
 migration-limit

 	cluster option

 	
 migration-threshold

 	resource meta-attribute

 	resource option

 	
 minutes

 	date_spec

 	duration

 	
 monthdays

 	date_spec

 	
 months

 	date_spec

 	duration

 	
 moon

 	date_spec

 	
 multiple-active

 	resource option

N

 	
 	
 name

 	acl_group attribute

 	acl_target attribute

 	action property

 	op

 	op_expression

 	
 network

 	XML element

 	attribute, add-host

 	attribute, ip-range-start

 	attribute; control-port

 	attribute; host-interface

 	attribute; host-netmask

 	docker attribute

 	podman attribute

 	
 no-quorum-policy

 	cluster option

 	node

 	Pacemaker Remote

 	alert

 	attribute

 	cluster node

 	guest

 	health

 	history

 	name

 	quorum-only

 	remote

 	rsc_location attribute

 	state

 	transient attribute

 	node attribute

 	#digests

 	#node-unfenced

 	fail-count

 	health

 	health (green)

 	health (red)

 	health (score)

 	health (yellow)

 	last-failure

 	maintenance

 	probe_complete

 	resource-discovery-enabled

 	rule

 	rule expression

 	shutdown

 	site-name

 	standby

 	terminate

 	transient

 	
 node option

 	CIB_pam_service

 	PCMK_authkey_location

 	PCMK_blackbox

 	PCMK_ca_file

 	PCMK_callgrind_enabled

 	PCMK_cert_file

 	PCMK_cluster_type

 	PCMK_crl_file

 	PCMK_debug

 	PCMK_dh_max_bits

 	PCMK_fail_fast

 	PCMK_ipc_buffer

 	PCMK_ipc_type

 	PCMK_key_file

 	PCMK_logfacility

 	PCMK_logfile

 	PCMK_logfile_mode

 	PCMK_logpriority

 	PCMK_node_action_limit

 	PCMK_node_start_state

 	PCMK_panic_action

 	PCMK_remote_address

 	PCMK_remote_pid1

 	PCMK_remote_port

 	PCMK_remote_schema_directory

 	PCMK_schema_directory

 	PCMK_stderr

 	PCMK_tls_priorities

 	PCMK_trace_blackbox

 	PCMK_trace_files

 	PCMK_trace_formats

 	PCMK_trace_functions

 	PCMK_trace_tags

 	PCMK_valgrind_enabled

 	SBD_SYNC_RESOURCE_STARTUP

 	SBD_WATCHDOG_TIMEOUT

 	VALGRIND_OPTS

 	
 	
 node-action-limit

 	cluster option

 	
 node-attribute

 	rsc_colocation attribute

 	
 node-health-base

 	cluster option

 	
 node-health-green

 	cluster option

 	
 node-health-red

 	cluster option

 	
 node-health-strategy

 	cluster option, [1]

 	custom

 	migrate-on-red

 	none

 	only-green

 	progressive

 	
 node-health-yellow

 	cluster option

 	
 node-pending-timeout

 	cluster option

 	
 node_state

 	XML element

 	crm-debug-origin

 	crmd

 	expected

 	id

 	in_ccm

 	join

 	uname

 	
 none

 	node-health-strategy value

 	
 nonnegative integer

 	type

 	
 notify

 	clone option

 	
 num_updates

 	cib

O

 	
 	
 object-type

 	acl_permission attribute

 	
 OCF

 	resources

 	
 on-fail

 	action property

 	op

 	
 on_node

 	lrm_rsc_op

 	
 only-green

 	node-health-strategy value

 	
 op

 	description

 	enabled

 	id

 	interval

 	interval-origin

 	name

 	on-fail

 	record-pending

 	role

 	start-delay

 	timeout

 	
 op-digest

 	lrm_rsc_op

 	
 op-restart-digest

 	lrm_rsc_op

 	
 op-secure-digest

 	lrm_rsc_op

 	
 op-status

 	lrm_rsc_op

 	
 op_expression

 	XML element

 	id

 	interval

 	name

 	
 	
 Open Cluster Framework

 	resources

 	
 operation

 	date_expression

 	expression

 	failure count

 	failure recovery

 	lrm_rsc_op

 	rule expression

 	
 operation defaults

 	rule

 	
 operation_key

 	lrm_rsc_op

 	Opt-In Clusters

 	Opt-Out Clusters

 	
 option

 	clone-max (clone)

 	clone-min (clone)

 	clone-node-max (clone)

 	globally-unique (clone)

 	interleave (clone)

 	notify (clone)

 	ordered (clone)

 	promotable (clone)

 	promoted-max (clone)

 	promoted-node-max (clone)

 	
 options

 	clone

 	docker attribute

 	podman attribute

 	rule

 	storage-mapping attribute

 	
 ordered

 	clone option

 	
 ordering constraint

 	rsc-role (clone)

 	with-rsc-role (clone)

P

 	
 	
 Pacemaker Remote

 	guest node

 	node

 	remote node

 	pcmk_action_limit

 	
 PCMK_authkey_location

 	node option

 	
 PCMK_blackbox

 	node option

 	
 PCMK_ca_file

 	node option

 	
 PCMK_callgrind_enabled

 	node option

 	
 PCMK_cert_file

 	node option

 	
 PCMK_cluster_type

 	node option

 	
 PCMK_crl_file

 	node option

 	
 PCMK_debug

 	node option

 	pcmk_delay_base

 	pcmk_delay_max

 	
 PCMK_dh_max_bits

 	node option

 	
 PCMK_fail_fast

 	node option

 	pcmk_host_argument

 	pcmk_host_check

 	pcmk_host_list

 	pcmk_host_map

 	
 PCMK_ipc_buffer

 	node option

 	
 PCMK_ipc_type

 	node option

 	
 PCMK_key_file

 	node option

 	pcmk_list_action

 	pcmk_list_retries

 	pcmk_list_timeout

 	
 PCMK_logfacility

 	node option

 	
 PCMK_logfile

 	node option

 	
 PCMK_logfile_mode

 	node option

 	
 PCMK_logpriority

 	node option

 	pcmk_monitor_action

 	pcmk_monitor_retries

 	pcmk_monitor_timeout

 	
 PCMK_node_action_limit

 	node option

 	
 PCMK_node_start_state

 	node option

 	pcmk_off_action

 	pcmk_off_retries

 	pcmk_off_timeout

 	
 PCMK_panic_action

 	node option

 	pcmk_reboot_action

 	pcmk_reboot_retries

 	pcmk_reboot_timeout

 	
 PCMK_remote_address

 	node option

 	
 PCMK_remote_pid1

 	node option

 	
 PCMK_remote_port

 	node option

 	
 PCMK_remote_schema_directory

 	node option

 	
 PCMK_schema_directory

 	node option

 	
 	pcmk_status_action

 	pcmk_status_retries

 	pcmk_status_timeout

 	
 PCMK_stderr

 	node option

 	
 PCMK_tls_priorities

 	node option

 	
 PCMK_trace_blackbox

 	node option

 	
 PCMK_trace_files

 	node option

 	
 PCMK_trace_formats

 	node option

 	
 PCMK_trace_functions

 	node option

 	
 PCMK_trace_tags

 	node option

 	
 PCMK_valgrind_enabled

 	node option

 	
 pe-error-series-max

 	cluster option

 	
 pe-input-series-max

 	cluster option

 	
 pe-warn-series-max

 	cluster option

 	
 percentage

 	type

 	
 placement-strategy

 	cluster option

 	
 podman

 	XML element

 	attribute, image

 	attribute, network

 	attribute, options

 	attribute, promoted-max

 	attribute, replicas

 	attribute, replicas-per-host

 	attribute, run-command

 	
 port

 	port-mapping attribute

 	remote node

 	type

 	
 port-mapping

 	XML element

 	attribute, id

 	attribute, internal-port

 	attribute, port

 	attribute, range

 	
 priority

 	resource option

 	
 priority-fencing-delay

 	cluster option

 	
 probe_complete

 	node attribute

 	
 progressive

 	node-health-strategy value

 	
 promotable

 	clone option

 	promotable clone

 	constraint

 	
 promoted-max

 	clone option

 	docker attribute

 	podman attribute

 	
 promoted-node-max

 	clone option

 	
 property

 	id (clone)

 	id (group)

 	
 provider

 	resource

 	rsc_expression

 	provides

Q

 	
 	
 queue-time

 	lrm_rsc_op

 	
 	quorum-only node

R

 	
 	
 range

 	port-mapping attribute

 	type

 	
 rc-code

 	lrm_rsc_op

 	
 recipient

 	XML element

 	
 reconnect_interval

 	remote node

 	
 record-pending

 	action property

 	op

 	
 red

 	node health attribute value

 	
 reference

 	acl_permission attribute

 	reload

 	reload-agent

 	remote node

 	port

 	reconnect_interval

 	server

 	
 remote-addr

 	resource option

 	
 remote-allow-migrate

 	resource option

 	
 remote-clear-port

 	cib

 	
 remote-connect-timeout

 	resource option

 	
 remote-node

 	resource option

 	
 remote-port

 	resource option

 	
 remote-tls-port

 	cib

 	
 replicas

 	docker attribute

 	podman attribute

 	
 replicas-per-host

 	docker attribute

 	podman attribute

 	
 require-all

 	resource_set attribute

 	
 requires

 	resource option

 	
 Resource

 	STONITH

 	System Services

 	Systemd

 	resource

 	LSB

 	OCF

 	action

 	alert

 	clone

 	constraint

 	failure count

 	failure recovery

 	history

 	location relative to other resources

 	migration-threshold

 	operation

 	option, allow-migrate

 	option, allow-unhealthy-nodes

 	option, container-attribute-target

 	option, critical

 	option, failure-timeout

 	option, is-managed

 	option, maintenance

 	option, migration-threshold

 	option, multiple-active

 	option, priority

 	option, remote-addr

 	option, remote-allow-migrate

 	option, remote-connect-timeout

 	option, remote-node

 	option, remote-port

 	option, requires

 	option, resource-stickiness

 	option, target-role

 	promotable

 	property, class

 	property, description

 	property, id

 	property, provider

 	property, type

 	resource set

 	rule expression

 	standard

 	start order

 	
 	
 resource defaults

 	rule

 	
 resource-discovery

 	rsc_location attribute

 	
 resource-discovery-enabled

 	node attribute

 	
 resource-stickiness

 	clone

 	group

 	resource option

 	
 resource_set

 	XML element

 	attribute, action

 	attribute, id

 	attribute, kind

 	attribute, require-all

 	attribute, role

 	attribute, score

 	attribute, sequential

 	
 role

 	XML element

 	action property

 	id (attribute)

 	op

 	resource_set attribute

 	rsc_location attribute

 	rule

 	
 rsc

 	rsc_colocation attribute

 	rsc_location attribute

 	
 rsc-pattern

 	rsc_location attribute

 	
 rsc-role

 	clone ordering constraint

 	
 rsc_colocation

 	XML element

 	attribute, id

 	attribute, influence

 	attribute, node-attribute

 	attribute, rsc

 	attribute, score

 	attribute, with-rsc

 	
 rsc_expression

 	XML element

 	class

 	id

 	provider

 	type

 	
 rsc_location

 	XML element

 	attribute, id

 	attribute, node

 	attribute, resource-discovery

 	attribute, role

 	attribute, rsc

 	attribute, rsc-pattern

 	attribute, score

 	
 rsc_order

 	XML element

 	attribute, first

 	attribute, first-action

 	attribute, id

 	attribute, kind

 	attribute, symmetrical

 	attribute, then

 	attribute, then-action

 	constraint

 	rule

 	XML element

 	boolean-op

 	cluster option, [1]

 	conditions

 	contexts

 	date/time expression

 	id

 	instance attribute

 	location constraint

 	meta-attribute

 	node attribute

 	node attribute expression

 	operation defaults

 	operation expression

 	options

 	resource defaults

 	resource expression

 	role

 	score

 	score-attribute

 	
 run-command

 	docker attribute

 	podman attribute

S

 	
 	
 SBD_SYNC_RESOURCE_STARTUP

 	node option

 	
 SBD_WATCHDOG_TIMEOUT

 	node option

 	
 score

 	cluster_property_set

 	instance_attributes

 	meta_attributes

 	node health attribute value

 	resource_set attribute

 	rsc_colocation attribute

 	rsc_location attribute

 	rule

 	type

 	utilization

 	
 score-attribute

 	rule

 	
 seconds

 	date_spec

 	duration

 	
 select

 	XML element

 	
 select_attributes

 	XML element

 	
 select_fencing

 	XML element

 	
 select_nodes

 	XML element

 	
 select_resources

 	XML element

 	
 sequential

 	resource_set attribute

 	
 server

 	remote node

 	
 shutdown

 	node attribute

 	
 shutdown-escalation

 	cluster option

 	
 shutdown-lock

 	cluster option

 	
 shutdown-lock-limit

 	cluster option

 	
 site-name

 	node attribute

 	
 source-dir

 	storage-mapping attribute

 	
 source-dir-root

 	storage-mapping attribute

 	
 	
 standby

 	node attribute

 	
 start

 	date_expression

 	
 start-delay

 	action property

 	op

 	
 start-failure-is-fatal

 	cluster option

 	
 startup-fencing

 	cluster option

 	
 status

 	XML element

 	STONITH

 	resources

 	
 stonith-action

 	cluster option

 	
 stonith-enabled

 	cluster option

 	
 stonith-max-attempts

 	cluster option

 	
 stonith-timeout

 	cluster option

 	stonith-timeout (primitive instance attribute)

 	
 stonith-watchdog-timeout

 	cluster option

 	
 stop-all-resources

 	cluster option

 	
 stop-orphan-actions

 	cluster option

 	
 stop-orphan-resources

 	cluster option

 	
 storage-mapping

 	attribute, id

 	attribute, options

 	attribute, source-dir

 	attribute, source-dir-root

 	attribute, target-dir

 	
 symmetric-cluster

 	cluster option

 	
 symmetrical

 	rsc_order attribute

 	Symmetrical Clusters

 	
 System Service

 	resources

 	
 Systemd

 	resources

T

 	
 	
 target

 	fencing-level

 	
 target-attribute

 	fencing-level

 	
 target-dir

 	storage-mapping attribute

 	
 target-pattern

 	fencing-level

 	
 target-role

 	resource option

 	
 target-value

 	fencing-level

 	
 terminate

 	node attribute

 	
 text

 	type

 	
 then

 	rsc_order attribute

 	
 timeout

 	action property

 	alert meta-attribute

 	op

 	type

 	
 timestamp-format

 	alert meta-attribute

 	
 transient_attributes

 	XML element

 	
 	
 transition-delay

 	cluster option

 	
 transition-key

 	lrm_rsc_op

 	
 transition-magic

 	lrm_rsc_op

 	
 type

 	boolean

 	date/time

 	duration

 	enumeration

 	epoch_time

 	expression

 	id

 	integer

 	iso8601

 	nonnegative integer

 	percentage

 	port

 	range

 	resource

 	rsc_expression

 	score

 	text

 	timeout

 	version

U

 	
 	
 uname

 	node_state

 	unfencing

 	
 	
 utilization

 	id

 	score

V

 	
 	
 VALGRIND_OPTS

 	node option

 	
 validate-with

 	cib

 	
 value

 	expression

 	
 	
 value-source

 	expression

 	
 version

 	type

W

 	
 	
 weekdays

 	date_spec

 	
 weeks

 	date_spec

 	duration

 	
 	
 weekyears

 	date_spec

 	
 with-rsc

 	rsc_colocation attribute

 	
 with-rsc-role

 	clone ordering constraint

X

 	
 	
 XML element

 	acl_group

 	acl_permission

 	acl_role

 	acl_target

 	acls

 	alert

 	alerts

 	attribute

 	bundle

 	cib

 	clone

 	configuration, [1]

 	date_expression

 	date_spec

 	docker

 	duration

 	expression

 	group

 	lrm

 	lrm_resource

 	lrm_resources

 	lrm_rsc_op

 	network

 	node_state

 	op_expression

 	podman

 	port-mapping

 	recipient

 	resource_set

 	role

 	rsc_colocation

 	rsc_expression

 	rsc_location

 	rsc_order

 	rule

 	select

 	select_attributes

 	select_fencing

 	select_nodes

 	select_resources

 	status

 	transient_attributes

 	
 	
 xpath

 	acl_permission attribute

Y

 	
 	
 yeardays

 	date_spec

 	
 years

 	date_spec

 	duration

 	
 	
 yellow

 	node health attribute value

 _static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

_images/pcmk-active-active.png

_images/pcmk-active-passive.png

nav.xhtml

 Table of Contents

 		
 Pacemaker Explained

 		
 Introduction

 		
 The Scope of this Document

 		
 What Is Pacemaker?

 		
 Cluster Architecture

 		
 Pacemaker Architecture

 		
 Node Redundancy Designs

 		
 Host-Local Configuration

 		
 Configuration Value Types

 		
 Scores

 		
 Local Options

 		
 Cluster-Wide Configuration

 		
 Configuration Layout

 		
 Option Precedence

 		
 CIB Properties

 		
 Cluster Options

 		
 Nodes

 		
 Cluster nodes

 		
 Host Clock Considerations

 		
 Pacemaker Remote nodes

 		
 Defining a Node

 		
 Where Pacemaker Gets the Node Name

 		
 Quorum-only Nodes

 		
 Node Attributes

 		
 Setting and querying node attributes

 		
 Special node attributes

 		
 Tracking Node Health

 		
 Node Health Attributes

 		
 Node Health Strategy

 		
 Exempting a Resource from Health Restrictions

 		
 Configuring Node Health Agents

 		
 Resources

 		
 Resource Standards

 		
 Open Cluster Framework

 		
 Systemd

 		
 Linux Standard Base

 		
 System Services

 		
 STONITH

 		
 Resource Properties

 		
 Resource Options

 		
 Resource Meta-Attributes

 		
 Setting Global Defaults for Resource Meta-Attributes

 		
 Resource Instance Attributes

 		
 Pacemaker Remote Resources

 		
 Remote nodes

 		
 Guest Nodes

 		
 Removing Pacemaker Remote Nodes

 		
 Resource Operations

 		
 Operation Properties

 		
 Monitoring Resources for Failure

 		
 Custom Recurring Operations

 		
 Setting Global Defaults for Operations

 		
 When Implicit Operations Take a Long Time

 		
 Multiple Monitor Operations

 		
 Disabling a Monitor Operation

 		
 Handling Resource Failure

 		
 Failure Counts

 		
 Failure Response

 		
 Reloading an Agent After a Definition Change

 		
 Migrating Resources

 		
 Resource Constraints

 		
 Deciding Which Nodes a Resource Can Run On

 		
 Location Properties

 		
 Asymmetrical “Opt-In” Clusters

 		
 Symmetrical “Opt-Out” Clusters

 		
 What if Two Nodes Have the Same Score

 		
 Specifying locations using pattern matching

 		
 Specifying the Order in which Resources Should Start/Stop

 		
 Ordering Properties

 		
 Optional and mandatory ordering

 		
 Symmetric and asymmetric ordering

 		
 Placing Resources Relative to other Resources

 		
 Colocation Properties

 		
 Mandatory Placement

 		
 Advisory Placement

 		
 Colocation by Node Attribute

 		
 Colocation Influence

 		
 Resource Sets

 		
 Anti-colocation Chains

 		
 Ordering Sets of Resources

 		
 Ordered Set

 		
 Ordering Multiple Sets

 		
 Resource Set OR Logic

 		
 Colocating Sets of Resources

 		
 External Resource Dependencies

 		
 Fencing

 		
 What Is Fencing?

 		
 Why Is Fencing Necessary?

 		
 Fence Devices

 		
 Fence Agents

 		
 When a Fence Device Can Be Used

 		
 Limitations of Fencing Resources

 		
 Special Meta-Attributes for Fencing Resources

 		
 Special Instance Attributes for Fencing Resources

 		
 Default Check Type

 		
 Unfencing

 		
 Fencing and Quorum

 		
 Fencing Timeouts

 		
 Fence Devices Dependent on Other Resources

 		
 Configuring Fencing

 		
 Example Fencing Configuration

 		
 Fencing Topologies

 		
 Example Dual-Layer, Dual-Device Fencing Topologies

 		
 Remapping Reboots

 		
 Collective Resources

 		
 Groups - A Syntactic Shortcut

 		
 Group Properties

 		
 Group Options

 		
 Group Instance Attributes

 		
 Group Contents

 		
 Group Constraints

 		
 Group Stickiness

 		
 Clones - Resources That Can Have Multiple Active Instances

 		
 Anonymous versus Unique Clones

 		
 Promotable clones

 		
 Clone Properties

 		
 Clone Options

 		
 Clone Contents

 		
 Clone Instance Attribute

 		
 Clone Constraints

 		
 Clone Stickiness

 		
 Monitoring Promotable Clone Resources

 		
 Determining Which Instance is Promoted

 		
 Bundles - Containerized Resources

 		
 Bundle Prerequisites

 		
 Bundle Properties

 		
 Bundle Container Properties

 		
 Bundle Network Properties

 		
 Bundle Storage Properties

 		
 Bundle Primitive

 		
 Bundle Node Attributes

 		
 Bundle Meta-Attributes

 		
 Limitations of Bundles

 		
 Utilization and Placement Strategy

 		
 Utilization attributes

 		
 Placement Strategy

 		
 How Multiple Capacities Combine

 		
 Order of Resource Assignment

 		
 Limitations

 		
 Rules

 		
 Rule Options

 		
 Rule Conditions and Contexts

 		
 Date/Time Expressions

 		
 Date Specifications

 		
 Durations

 		
 Example Date/Time Expressions

 		
 Node Attribute Expressions

 		
 Resource Type Expressions

 		
 Example Resource Type Expressions

 		
 Operation Type Expressions

 		
 Example Operation Type Expressions

 		
 Using Rules to Determine Resource Location

 		
 Location Rules Based on Other Node Properties

 		
 Using score-attribute Instead of score

 		
 Specifying location scores using pattern submatches

 		
 Using Rules to Define Options

 		
 Using Rules to Control Resource Options

 		
 Using Rules to Control Resource Defaults

 		
 Using Rules to Control Cluster Options

 		
 Access Control Lists (ACLs)

 		
 ACL Prerequisites

 		
 ACL Configuration

 		
 ACL Roles

 		
 ACL Targets and Groups

 		
 ACLs and Pacemaker Remote Nodes

 		
 ACL Examples

 		
 ACL Limitations

 		
 Actions performed via IPC rather than the CIB

 		
 ACLs and Pacemaker Remote

 		
 Alerts

 		
 Alert Agents

 		
 Alert Recipients

 		
 Alert Meta-Attributes

 		
 Alert Instance Attributes

 		
 Alert Filters

 		
 Reusing Parts of the Configuration

 		
 Reusing Resource Definitions

 		
 Configuring Resources with Templates

 		
 Using Templates in Constraints

 		
 Using Templates in Resource Sets

 		
 Reusing Rules, Options and Sets of Operations

 		
 Tagging Configuration Elements

 		
 Configuring Tags

 		
 Using Tags in Constraints and Resource Sets

 		
 Filtering With Tags

 		
 Status

 		
 Node State

 		
 Transient Node Attributes

 		
 Node History

 		
 Resource History

 		
 Action History

 		
 Simple Operation History Example

 		
 Complex Operation History Example

 		
 Multi-Site Clusters and Tickets

 		
 Challenges for Multi-Site Clusters

 		
 Conceptual Overview

 		
 Ticket

 		
 Dead Man Dependency

 		
 Cluster Ticket Registry

 		
 Configuration Replication

 		
 Configuring Ticket Dependencies

 		
 Managing Multi-Site Clusters

 		
 Granting and Revoking Tickets Manually

 		
 Granting and Revoking Tickets via a Cluster Ticket Registry

 		
 General Management of Tickets

 		
 For more information

 		
 Sample Configurations

 		
 Empty

 		
 Simple

 		
 Advanced Configuration

_static/up.png

_images/pcmk-shared-failover.png

_images/resource-set.png

_images/pcmk-colocated-sets.png

_images/pcmk-internals.png

_static/ajax-loader.gif

_static/comment-bright.png

_images/three-sets.png

_images/two-sets.png

_static/comment-close.png

