

Pacemaker Development

Working with the Pacemaker Code Base

Abstract

This document has guidelines and tips for developers interested in editing
Pacemaker source code and submitting changes for inclusion in the project.
Start with the FAQ; the rest is optional detail.

Table of Contents

	1. Frequently Asked Questions

	2. General Guidelines for All Languages
	2.1. Copyright

	2.2. Terminology

	3. Documentation Guidelines
	3.1. Books

	4. Python Coding Guidelines
	4.1. Python Boilerplate

	4.2. Python Version Compatibility

	4.3. Formatting Python Code

	5. C Coding Guidelines
	5.1. Code Organization

	5.2. Pacemaker Libraries
	5.2.1. Public versus Internal APIs

	5.2.2. API Symbol Naming

	5.2.3. API Header File Naming

	5.2.4. API Documentation

	5.2.5. Public API Deprecation

	5.3. C Boilerplate

	5.4. Line Formatting

	5.5. Comments

	5.6. Operators

	5.7. Control Statements (if, else, while, for, switch)

	5.8. Macros

	5.9. Memory Management

	5.10. Structures

	5.11. Variables
	5.11.1. Pointers

	5.11.2. Globals

	5.11.3. Variable Naming

	5.11.4. Booleans

	5.12. String Handling
	5.12.1. Define Constants for Magic Strings

	5.12.2. String-Related Library Functions

	5.12.3. char*, gchar*, and GString

	5.12.4. Regular Expressions

	5.13. Enumerations
	5.13.1. Flag groups

	5.14. Functions
	5.14.1. Function Naming

	5.14.2. Function Definitions

	5.14.3. Return Values

	5.14.4. Public API Functions

	5.15. Logging and Output
	5.15.1. Logging Vs. Output

	5.15.2. Common Guidelines for All Messages

	5.15.3. Log Levels

	5.15.4. Logging

	5.15.5. Assertion Logging

	5.15.6. Output

	5.16. XML
	5.16.1. External Libraries

	5.16.2. Naming

	5.16.3. Private Data

	5.16.4. Wrapper Functions

	5.16.5. XPaths

	5.17. Makefiles

	5.18. vim Settings

	6. Coding Particular Pacemaker Components
	6.1. Controller
	6.1.1. Join sequence

	6.2. Fencer
	6.2.1. Initiating a fencing request

	6.2.2. Fencing queries

	6.2.3. Fencing operations

	6.2.4. Fencing replies

	6.2.5. Fencing History

	6.3. Scheduler
	6.3.1. Challenges

	6.3.2. The Scheduler Object

	6.3.3. Resources

	6.3.4. Nodes

	6.3.5. Actions

	6.3.6. Colocations

	6.3.7. Action Relations

	6.3.8. Adding a New Scheduler Regression Test

	7. C Development Helpers
	7.1. Refactoring

	7.2. Sanitizers

	7.3. Unit Testing
	7.3.1. Organization

	7.3.2. Adding a test

	7.3.3. Writing the test

	7.3.4. Assertions

	7.3.5. Running

	7.4. Fuzz Testing
	7.4.1. Fuzzers

	7.4.2. Local Fuzzing

	7.5. Code Coverage

	7.6. Debugging
	7.6.1. gdb

	8. Evolution of the project
	8.1. Origin in Heartbeat project
	8.1.1. Influence of Heartbeat on Pacemaker

	8.2. Notable Restructuring Steps in the Codebase

	9. Glossary

Index

	Index

	Search Page

1. Frequently Asked Questions

	Q

	Who is this document intended for?

	A

	Anyone who wishes to read and/or edit the Pacemaker source code.
Casual contributors should feel free to read just this FAQ, and
consult other chapters as needed.

	Q

	Where is the source code for Pacemaker?

	A

	The source code for Pacemaker [https://github.com/ClusterLabs/pacemaker] is
kept on GitHub [https://github.com/], as are all software projects under the
ClusterLabs [https://github.com/ClusterLabs] umbrella. Pacemaker uses
Git [https://git-scm.com/] for source code management. If you are a Git newbie,
the gittutorial(7) man page [http://schacon.github.io/git/gittutorial.html]
is an excellent starting point. If you’re familiar with using Git from the
command line, you can create a local copy of the Pacemaker source code with:
git clone https://github.com/ClusterLabs/pacemaker.git

	Q

	What are the different Git branches and repositories used for?

	A

	
	The main branch [https://github.com/ClusterLabs/pacemaker/tree/main]
is used for all new development.

	The 3.0 [https://github.com/ClusterLabs/pacemaker/tree/3.0] and
2.1 [https://github.com/ClusterLabs/pacemaker/tree/2.1] branches are
for the currently supported major and minor version release series.
Normally, they do not receive any changes, but during the release cycle
for a new release, they will contain release candidates. The main branch
is pulled into 3.0 just before the first release candidate of a new
release, but otherwise, separate pull requests must be submitted to
backport changes from the main branch into a release branch.

	The 2.0 branch [https://github.com/ClusterLabs/pacemaker/tree/2.0],
1.1 branch [https://github.com/ClusterLabs/pacemaker/tree/1.1],
and separate
1.0 repository [https://github.com/ClusterLabs/pacemaker-1.0]
are frozen snapshots of earlier release series, no longer being developed.

	Q

	How do I build from the source code?

	A

	See INSTALL.md [https://github.com/ClusterLabs/pacemaker/blob/main/INSTALL.md]
in the main checkout directory.

	Q

	What coding style should I follow?

	A

	You’ll be mostly fine if you simply follow the example of existing code.
When unsure, see the relevant chapter of this document for language-specific
recommendations. Pacemaker has grown and evolved organically over many years,
so you will see much code that doesn’t conform to the current guidelines. We
discourage making changes solely to bring code into conformance, as any change
requires developer time for review and opens the possibility of adding bugs.
However, new code should follow the guidelines, and it is fine to bring lines
of older code into conformance when modifying that code for other reasons.

	Q

	How should I format my Git commit messages?

	A

	An example is “Feature: scheduler: wobble the frizzle better”.

	The first part is the type of change, used to automatically generate the
change log for the next release. Commit messages with the following will
be included in the change log:

	Feature for new features

	Fix for bug fixes (Bug or High also work)

	API for changes to the public API

Everything else will not automatically be in the change log, and so
don’t really matter, but types commonly used include:

	Log for changes to log messages or handling

	Doc for changes to documentation or comments

	Test for changes in CTS and regression tests

	Low, Med, or Mid for bug fixes not significant enough for a
change log entry

	Refactor for refactoring-only code changes

	Build for build process changes

	The next part is the name of the component(s) being changed, for example,
controller or libcrmcommon (it’s more free-form, so don’t sweat
getting it exact).

	The rest briefly describes the change. The git project recommends the
entire summary line stay under 50 characters, but more is fine if needed
for clarity.

	Except for the most simple and obvious of changes, the summary should be
followed by a blank line and a longer explanation of why the change was
made.

	If the commit is associated with a task in the ClusterLabs project
manager [https://projects.clusterlabs.org/], you can say
“Fixes Tn” in the commit message to automatically close task
Tn when the pull request is merged.

	Q

	How can I test my changes?

	A

	The source repository has some unit tests for simple functions, though this
is a recent effort without much coverage yet. Pacemaker’s Cluster Test
Suite (CTS) has regression tests for most major components; these will
automatically be run for any pull requests submitted through GitHub, and
are sufficient for most changes. Additionally, CTS has a lab component that
can be used to set up a test cluster and run a wide variety of complex
tests, for testing major changes. See cts/README.md in the source
repository for details.

	Q

	What is Pacemaker’s license?

	A

	Except where noted otherwise in the file itself, the source code for all
Pacemaker programs is licensed under version 2 or later of the GNU General
Public License (GPLv2+ [https://www.gnu.org/licenses/gpl-2.0.html]), its
headers, libraries, and native language translations under version 2.1 or
later of the less restrictive GNU Lesser General Public License
(LGPLv2.1+ [https://www.gnu.org/licenses/lgpl-2.1.html]),
its documentation under version 4.0 or later of the
Creative Commons Attribution-ShareAlike International Public License
(CC-BY-SA-4.0 [https://creativecommons.org/licenses/by-sa/4.0/legalcode]),
and its init scripts under the
Revised BSD [https://opensource.org/licenses/BSD-3-Clause] license. If you find
any deviations from this policy, or wish to inquire about alternate licensing
arrangements, please e-mail the
developers@ClusterLabs.org [https://lists.ClusterLabs.org/mailman/listinfo/developers]
mailing list. Licensing issues are also discussed on the
ClusterLabs wiki [https://wiki.ClusterLabs.org/wiki/License].

	Q

	How can I contribute my changes to the project?

	A

	Contributions of bug fixes or new features are very much appreciated!
Patches can be submitted as
pull requests [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests]
via GitHub (the preferred method, due to its excellent
features [https://github.com/features/]), or e-mailed to the
developers@ClusterLabs.org [https://lists.ClusterLabs.org/mailman/listinfo/developers]
mailing list as an attachment in a format Git can import. Authors may only
submit changes that they have the right to submit under the open source
license indicated in the affected files.

	Q

	What if I still have questions?

	A

	Ask on the
ClusterLabs mailing lists [https://projects.clusterlabs.org/w/clusterlabs/clusterlabs_mailing_lists/].

2. General Guidelines for All Languages

2.1. Copyright

When copyright notices are added to a file, they should look like this:

Note

Copyright Notice Format

Copyright YYYY[-YYYY] the Pacemaker project contributors

The version control history for this file may have further details.

The first YYYY is the year the file was originally published. The original
date is important for two reasons: when two entities claim copyright ownership
of the same work, the earlier claim generally prevails; and copyright
expiration is generally calculated from the original publication date. 1

If the file is modified in later years, add -YYYY with the most recent year
of modification. Even though Pacemaker is an ongoing project, copyright notices
are about the years of publication of specific content.

Copyright notices are intended to indicate, but do not affect, copyright
ownership, which is determined by applicable laws and regulations. Authors
may put more specific copyright notices in their commit messages if desired.

Footnotes

	1

	See the U.S. Copyright Office’s “Compendium of U.S. Copyright Office
Practices” [https://www.copyright.gov/comp3/], particularly “Chapter
2200: Notice of Copyright”, sections 2205.1(A) and 2205.1(F), or
“Updating Copyright Notices” [https://techwhirl.com/updating-copyright-notices/] for a more
readable summary.

2.2. Terminology

Pacemaker is extremely complex, and it helps to use terminology consistently
throughout documentation, symbol names and comments in code, and so forth. It
also helps to use natural language when practical instead of technical jargon
and acronyms.

For specific recommendations, see the Glossary.

3. Documentation Guidelines

See doc/README.md [https://github.com/ClusterLabs/pacemaker/blob/main/doc/README.md] in the
source code repository for the kinds of documentation that Pacemaker provides.

3.1. Books

The doc/sphinx subdirectory has a subdirectory for each book by title. Each
book’s directory contains .rst files, which are the chapter sources in
reStructuredText [https://www.sphinx-doc.org/en/master/usage/restructuredtext/] format (with
index.rst as the starting point).

Once you have edited the sources as desired, run make in the doc or
doc/sphinx directory to generate all the books locally. You can view the
results by pointing your web browser to (replacing PATH_TO_CHECKOUT and
BOOK_TITLE appropriately):

file:///PATH_TO_CHECKOUT/doc/sphinx/BOOK_TITLE/_build/html/index.html

See the comments at the top of doc/sphinx/Makefile.am for options you can
use.

Recommended practices:

	Use list-table instead of table for tables

	When documenting newly added features and syntax, add “*(since X.Y.Z)*”
with the version introducing them. These comments can be removed when rolling
upgrades from that version are no longer supported.

4. Python Coding Guidelines

4.1. Python Boilerplate

If a Python file is meant to be executed (as opposed to imported), it should
have a .in extension, and its first line should be:

#!@PYTHON@

which will be replaced with the appropriate python executable when Pacemaker is
built. To make that happen, add an entry to CONFIG_FILES_EXEC() in
configure.ac, and add the file name without .in to .gitignore (see
existing examples).

After the above line if any, every Python file should start like this:

""" <BRIEF-DESCRIPTION>
"""

__copyright__ = "Copyright <YYYY[-YYYY]> the Pacemaker project contributors"
__license__ = "<LICENSE> WITHOUT ANY WARRANTY"

<BRIEF-DESCRIPTION> is obviously a brief description of the file’s
purpose. The string may contain any other information typically used in
a Python file docstring [https://www.python.org/dev/peps/pep-0257/].

<LICENSE> should follow the policy set forth in the
COPYING [https://github.com/ClusterLabs/pacemaker/blob/main/COPYING] file,
generally one of “GNU General Public License version 2 or later (GPLv2+)”
or “GNU Lesser General Public License version 2.1 or later (LGPLv2.1+)”.

4.2. Python Version Compatibility

Pacemaker targets compatibility with Python 3.6 and later.

Do not use features not available in all targeted Python versions. An
example is the subprocess.run() function.

4.3. Formatting Python Code

	Indentation must be 4 spaces, no tabs.

	Do not leave trailing whitespace.

	Lines should be no longer than 80 characters unless limiting line length
significantly impacts readability. For Python, this limitation is
flexible since breaking a line often impacts readability, but
definitely keep it under 120 characters.

	Where not conflicting with this style guide, it is recommended (but not
required) to follow PEP 8 [https://www.python.org/dev/peps/pep-0008/].

	It is recommended (but not required) to format Python code such that
pylint
--disable=line-too-long,too-many-lines,too-many-instance-attributes,too-many-arguments,too-many-statements
produces minimal complaints (even better if you don’t need to disable all
those checks).

5. C Coding Guidelines

Pacemaker is a large project accepting contributions from developers with a
wide range of skill levels and organizational affiliations, and maintained by
multiple people over long periods of time. Following consistent guidelines
makes reading, writing, and reviewing code easier, and helps avoid common
mistakes.

Some existing Pacemaker code does not follow these guidelines, for historical
reasons and API backward compatibility, but new code should.

5.1. Code Organization

Pacemaker’s C code is organized as follows:

	Directory

	Contents

	daemons

	the Pacemaker daemons (pacemakerd, pacemaker-based, etc.)

	include

	header files for library APIs

	lib

	libraries

	tools

	command-line tools

Source file names should be unique across the entire project, to allow for
individual tracing via PCMK_trace_files.

5.2. Pacemaker Libraries

	Library

	Symbol
prefix

	Source
location

	API Headers

	Description

	libcib

	cib

	lib/cib

	
include/crm/cib.h

include/crm/cib/*

	API for pacemaker-based IPC and
the CIB

	libcrmcluster

	pcmk

	lib/cluster

	
include/crm/cluster.h

include/crm/cluster/*

	Abstract interface to underlying
cluster layer

	libcrmcommon

	pcmk

	lib/common

	
include/crm/common/*

some of include/crm/*

	Everything else

	libcrmservice

	svc

	lib/services

	
include/crm/services.h

	Abstract interface to supported
resource types (OCF, LSB, etc.)

	liblrmd

	lrmd

	lib/lrmd

	
include/crm/lrmd*.h

	API for pacemaker-execd IPC

	libpacemaker

	pcmk

	lib/pacemaker

	
include/pacemaker*.h

include/pcmki/*

	High-level APIs equivalent to
command-line tool capabilities
(and high-level internal APIs)

	libpe_rules

	pe

	lib/pengine

	
include/crm/pengine/*

	Scheduler functionality related
to evaluating rules

	libpe_status

	pe

	lib/pengine

	
include/crm/pengine/*

	Low-level scheduler functionality

	libstonithd

	stonith

	lib/fencing

	
include/crm/stonith-ng.h

include/crm/fencing/*

	API for pacemaker-fenced IPC

5.2.1. Public versus Internal APIs

Pacemaker libraries have both internal and public APIs. Internal APIs are those
used only within Pacemaker; public APIs are those offered (via header files and
documentation) for external code to use.

Generic functionality needed by Pacemaker itself, such as string processing or
XML processing, should remain internal, while functions providing useful
high-level access to Pacemaker capabilities should be public. When in doubt,
keep APIs internal, because it’s easier to expose a previously internal API
than hide a previously public API.

Internal APIs can be changed as needed.

The public API/ABI should maintain a degree of stability so that external
applications using it do not need to be rewritten or rebuilt frequently. Many
OSes/distributions avoid breaking API/ABI compatibility within a major release,
so if Pacemaker breaks compatibility, that significantly delays when OSes
can package the new version. Therefore, changes to public APIs should be
backward-compatible (as detailed throughout this chapter), unless we are doing
a (rare) release where we specifically intend to break compatibility.

External applications known to use Pacemaker’s public C API include
sbd [https://github.com/ClusterLabs/sbd] and dlm_controld.

5.2.2. API Symbol Naming

Exposed API symbols (non-static function names, struct and typedef
names in header files, etc.) must begin with the prefix appropriate to the
library (shown in the table at the beginning of this section). This reduces the
chance of naming collisions when external software links against the library.

The prefix is usually lowercase but may be all-caps for some defined constants
and macros.

Public API symbols should follow the library prefix with a single underbar
(for example, pcmk_something), and internal API symbols with a double
underbar (for example, pcmk__other_thing).

File-local symbols (such as static functions) and non-library code do not
require a prefix, though a unique prefix indicating an executable (controld,
crm_mon, etc.) can be helpful when symbols are shared between multiple
source files for the executable.

5.2.3. API Header File Naming

	Internal API headers should be named ending in _internal.h, in the same
location as public headers, with the exception of libpacemaker, which for
historical reasons keeps internal headers in include/pcmki/pcmki_*.h).

	If a library needs to share symbols just within the library, header files for
these should be named ending in _private.h and located in the library
source directory (not include). Such functions should be declared as
G_GNUC_INTERNAL, to aid compiler efficiency (glib defines this
symbol appropriately for the compiler).

Header files that are not library API are kept in the same directory as the
source code they’re included from.

The easiest way to tell what kind of API a symbol is, is to see where it’s
declared. If it’s in a public header, it’s public API; if it’s in an internal
header, it’s internal API; if it’s in a library-private header, it’s
library-private API; otherwise, it’s not an API.

5.2.4. API Documentation

Pacemaker uses Doxygen [https://www.doxygen.nl/manual/docblocks.html]
to automatically generate its
online API documentation [https://clusterlabs.org/pacemaker/doxygen/],
so all public API (header files, functions, structs, enums, etc.) should be
documented with Doxygen comment blocks. Other code may be documented in the
same way if desired, with an \internal tag in the Doxygen comment.

Simple example of an internal function with a Doxygen comment block:

/*!
 * \internal
 * \brief Return string length plus 1
 *
 * Return the number of characters in a given string, plus one.
 *
 * \param[in] s A string (must not be NULL)
 *
 * \return The length of \p s plus 1.
 */
static int
f(const char *s)
{
 return strlen(s) + 1;
}

Function arguments are marked as [in] for input only, [out] for output
only, or [in,out] for both input and output.

[in,out] should be used for struct pointer arguments if the function can
change any data accessed via the pointer. For example, if the struct contains
a GHashTable * member, the argument should be marked as [in,out] if the
function inserts data into the table, even if the struct members themselves are
not changed. However, an argument is not [in,out] if something reachable
via the argument is modified via a separate argument. For example, both
pcmk_resource_t and pcmk_node_t contain pointers to their
pcmk_scheduler_t and thus indirectly to each other, but if the function
modifies the resource via the resource argument, the node argument does not
have to be [in,out].

5.2.5. Public API Deprecation

Public APIs may not be removed in most Pacemaker releases, but they may be
deprecated.

When a public API is deprecated, it is moved to a header whose name ends in
compat.h. The original header includes the compatibility header only if the
PCMK_ALLOW_DEPRECATED symbol is undefined or defined to 1. This allows
external code to continue using the deprecated APIs, but internal code is
prevented from using them because the crm_internal.h header defines the
symbol to 0.

5.3. C Boilerplate

Every C file should start with a short copyright and license notice:

/*
 * Copyright <YYYY[-YYYY]> the Pacemaker project contributors
 *
 * The version control history for this file may have further details.
 *
 * This source code is licensed under <LICENSE> WITHOUT ANY WARRANTY.
 */

<LICENSE> should follow the policy set forth in the
COPYING [https://github.com/ClusterLabs/pacemaker/blob/main/COPYING] file,
generally one of “GNU General Public License version 2 or later (GPLv2+)”
or “GNU Lesser General Public License version 2.1 or later (LGPLv2.1+)”.

Header files should additionally protect against multiple inclusion by defining
a unique symbol of the form PCMK__<capitalized_header_name>__H, and declare
C compatibility for inclusion by C++. For example:

#ifndef PCMK__MY_HEADER__H
#define PCMK__MY_HEADER__H

// put #include directives here

#ifdef __cplusplus
extern "C" {
#endif

// put header code here

#ifdef __cplusplus
}
#endif

#endif // PCMK__MY_HEADER__H

Public API header files should give a Doxygen file description at the top of
the header code. For example:

/*!
 * \file
 * \brief My brief description here
 * \ingroup core
 */

5.4. Line Formatting

	Indentation must be 4 spaces, no tabs.

	Do not leave trailing whitespace.

	Lines should be no longer than 80 characters unless limiting line length
hurts readability.

5.5. Comments

/* Single-line comments may look like this */

// ... or this

/* Multi-line comments should start immediately after the comment opening.
 * Subsequent lines should start with an aligned asterisk. The comment
 * closing should be aligned and on a line by itself.
 */

5.6. Operators

// Operators have spaces on both sides
x = a;

/* (1) Do not rely on operator precedence; use parentheses when mixing
 * operators with different priority, for readability.
 * (2) No space is used after an opening parenthesis or before a closing
 * parenthesis.
 */
x = a + b - (c * d);

5.7. Control Statements (if, else, while, for, switch)

/*
 * (1) The control keyword is followed by a space, a left parenthesis
 * without a space, the condition, a right parenthesis, a space, and the
 * opening bracket on the same line.
 * (2) Always use braces around control statement blocks, even if they only
 * contain one line. This makes code review diffs smaller if a line gets
 * added in the future, and avoids the chance of bad indenting making a
 * line incorrectly appear to be part of the block.
 * (3) The closing bracket is on a line by itself.
 */
if (v < 0) {
 return 0;
}

/* "else" and "else if" are on the same line with the previous ending brace
 * and next opening brace, separated by a space. Blank lines may be used
 * between blocks to help readability.
 */
if (v > 0) {
 return 0;

} else if (a == 0) {
 return 1;

} else {
 return 2;
}

/* Do not use assignments in conditions. This ensures that the developer's
 * intent is always clear, makes code reviews easier, and reduces the chance
 * of using assignment where comparison is intended.
 */
// Do this ...
a = f();
if (a) {
 return 0;
}
// ... NOT this
if (a = f()) {
 return 0;
}

/* It helps readability to use the "!" operator only in boolean
 * comparisons, and explicitly compare numeric values against 0,
 * pointers against NULL, etc. This helps remind the reader of the
 * type being compared.
 */
int i = 0;
char *s = NULL;
bool cond = false;

if (!cond) {
 return 0;
}
if (i == 0) {
 return 0;
}
if (s == NULL) {
 return 0;
}

/* In a "switch" statement, indent "case" one level, and indent the body of
 * each "case" another level.
 */
switch (expression) {
 case 0:
 command1;
 break;
 case 1:
 command2;
 break;
 default:
 command3;
 break;
}

5.8. Macros

Macros are a powerful but easily misused feature of the C preprocessor, and
Pacemaker uses a lot of obscure macro features. If you need to brush up, the
GCC documentation for macros [https://gcc.gnu.org/onlinedocs/cpp/Macros.html#Macros] is excellent.

Some common issues:

	Beware of side effects in macro arguments that may be evaluated more than
once

	Always parenthesize macro arguments used in the macro body to avoid
precedence issues if the argument is an expression

	Multi-statement macro bodies should be enclosed in do…while(0) to make them
behave more like a single statement and avoid control flow issues

Often, a static inline function defined in a header is preferable to a macro,
to avoid the numerous issues that plague macros and gain the benefit of
argument and return value type checking.

5.9. Memory Management

	Always use calloc() rather than malloc(). It has no additional cost on
modern operating systems, and reduces the severity and security risks of
uninitialized memory usage bugs.

	Ensure that all dynamically allocated memory is freed when no longer needed,
and not used after it is freed. This can be challenging in the more
event-driven, callback-oriented sections of code.

	Free dynamically allocated memory using the free function corresponding to
how it was allocated. For example, use free() with calloc(), and
g_free() with most glib functions that allocate objects.

5.10. Structures

Changes to structures defined in public API headers (adding or removing
members, or changing member types) are generally not possible without breaking
API compatibility. However, there are exceptions:

	Public API structures can be designed such that they can be allocated only
via API functions, not declared directly or allocated with standard memory
functions using sizeof.

	This can be enforced simply by documentating the limitation, in which case
new struct members can be added to the end of the structure without
breaking compatibility.

	Alternatively, the structure definition can be kept in an internal header,
with only a pointer type definition kept in a public header, in which case
the structure definition can be changed however needed.

5.11. Variables

5.11.1. Pointers

/* (1) The asterisk goes by the variable name, not the type;
 * (2) Avoid leaving pointers uninitialized, to lessen the impact of
 * use-before-assignment bugs
 */
char *my_string = NULL;

// Use space before asterisk and after closing parenthesis in a cast
char *foo = (char *) bar;

5.11.2. Globals

Global variables should be avoided in libraries when possible. State
information should instead be passed as function arguments (often as a
structure). This is not for thread safety – Pacemaker’s use of forking
ensures it will never be threaded – but it does minimize overhead,
improve readability, and avoid obscure side effects.

5.11.3. Variable Naming

Time intervals are sometimes represented in Pacemaker code as user-defined
text specifications (for example, “10s”), other times as an integer number of
seconds or milliseconds, and still other times as a string representation
of an integer number. Variables for these should be named with an indication
of which is being used (for example, use interval_spec, interval_ms,
or interval_ms_s instead of interval).

5.11.4. Booleans

Booleans in C can be represented by an integer type, bool, or gboolean.

Integers are sometimes useful for storing booleans when they must be converted
to and from a string, such as an XML attribute value (for which
crm_element_value_int() can be used). Integer booleans use 0 for false and
nonzero (usually 1) for true.

gboolean should be used with glib APIs that specify it. gboolean should
always be used with glib’s TRUE and FALSE constants.

Otherwise, bool should be preferred. bool should be used with the
true and false constants from the stdbool.h header.

Do not use equality operators when testing booleans. For example:

// Do this
if (bool1) {
 fn();
}
if (!bool2) {
 fn2();
}

// Not this
if (bool1 == true) {
 fn();
}
if (bool2 == false) {
 fn2();
}

// Otherwise there's no logical end ...
if ((bool1 == false) == true) {
 fn();
}

5.12. String Handling

5.12.1. Define Constants for Magic Strings

A “magic” string is one used for control purposes rather than human reading,
and which must be exactly the same every time it is used. Examples would be
configuration option names, XML attribute names, or environment variable names.

These should always be defined constants, rather than using the string literal
everywhere. If someone mistypes a defined constant, the code won’t compile, but
if they mistype a literal, it could go unnoticed until a user runs into a
problem.

5.12.2. String-Related Library Functions

Pacemaker’s libcrmcommon has a large number of functions to assist in string
handling. The most commonly used ones are:

	pcmk__str_eq() tests string equality (similar to strcmp()), but can
handle NULL, and takes options for case-insensitive, whether NULL should be
considered a match, etc.

	crm_strdup_printf() takes printf()-style arguments and creates a
string from them (dynamically allocated, so it must be freed with
free()). It asserts on memory failure, so the return value is always
non-NULL.

String handling functions should almost always be internal API, since Pacemaker
isn’t intended to be used as a general-purpose library. Most are declared in
include/crm/common/strings_internal.h. util.h has some older ones that
are public API (for now, but will eventually be made internal).

5.12.3. char*, gchar*, and GString

When using dynamically allocated strings, be careful to always use the
appropriate free function.

	char* strings allocated with something like calloc() must be freed
with free(). Most Pacemaker library functions that allocate strings use
this implementation.

	glib functions often use gchar* instead, which must be freed with
g_free().

	Occasionally, it’s convenient to use glib’s flexible GString* type, which
must be freed with g_string_free().

5.12.4. Regular Expressions

	Use REG_NOSUB with regcomp() whenever possible, for efficiency.

	Be sure to use regfree() appropriately.

5.13. Enumerations

	Enumerations should not have a typedef, and do not require any naming
convention beyond what applies to all exposed symbols.

	New values should usually be added to the end of public API enumerations,
because the compiler will define the values to 0, 1, etc., in the order
given, and inserting a value in the middle would change the numerical values
of all later values, breaking code compiled with the old values. However, if
enum numerical values are explicitly specified rather than left to the
compiler, new values can be added anywhere.

	When defining constant integer values, enum should be preferred over
#define or const when possible. This allows type checking without
consuming memory.

5.13.1. Flag groups

Pacemaker often uses flag groups (also called bit fields or bitmasks) for a
collection of boolean options (flags/bits).

This is more efficient for storage and manipulation than individual booleans,
but its main advantage is when used in public APIs, because using another bit
in a bitmask is backward compatible, whereas adding a new function argument (or
sometimes even a structure member) is not.

#include <stdint.h>

/* (1) Define an enumeration to name the individual flags, for readability.
 * An enumeration is preferred to a series of "#define" constants
 * because it is typed, and logically groups the related names.
 * (2) Define the values using left-shifting, which is more readable and
 * less error-prone than hexadecimal literals (0x0001, 0x0002, 0x0004,
 * etc.).
 * (3) Using a comma after the last entry makes diffs smaller for reviewing
 * if a new value needs to be added or removed later.
 */
enum pcmk__some_bitmask_type {
 pcmk__some_value = (1 << 0),
 pcmk__other_value = (1 << 1),
 pcmk__another_value = (1 << 2),
};

/* The flag group itself should be an unsigned type from stdint.h (not
 * the enum type, since it will be a mask of the enum values and not just
 * one of them). uint32_t is the most common, since we rarely need more than
 * 32 flags, but a smaller or larger type could be appropriate in some
 * cases.
 */
uint32_t flags = pcmk__some_value|pcmk__other_value;

/* If the values will be used only with uint64_t, define them accordingly,
 * to make compilers happier.
 */
enum pcmk__something_else {
 pcmk__whatever = (UINT64_C(1) << 0),
};

We have convenience functions for checking flags (see pcmk_any_flags_set(),
pcmk_all_flags_set(), and pcmk_is_set()) as well as setting and
clearing them (see pcmk__set_flags_as() and pcmk__clear_flags_as(),
usually used via wrapper macros defined for specific flag groups). These
convenience functions should be preferred to direct bitwise arithmetic, for
readability and logging consistency.

5.14. Functions

5.14.1. Function Naming

Function names should be unique across the entire project, to allow for
individual tracing via PCMK_trace_functions, and make it easier to search
code and follow detail logs.

5.14.1.1. Sorting

A function that sorts an entire list should have sort in its name. It sorts
elements using a comparison function, which may be either
hard-coded or passed as an argument.

5.14.1.2. Comparison

A comparison function for sorting should have cmp in its
name and should not have sort in its name.

5.14.1.3. Constructors

A constructor creates a new dynamically allocated object. It may perform some
initialization procedure on the new object.

	If the constructor always creates an independent object instance, its name
should include new.

	If the constructor may add the new object to some existing object, its name
should include create.

5.14.1.4. Functions that take the caller’s name as an argument

Sometimes, we define a function that uses the __FILE__, __func__,
and/or __LINE__ of the caller for logging purposes, often with a wrapper
macro that automatically passes them.

	The function should take those values as its first arguments.

	The function name should end in _as().

	If a wrapper macro is used, its name should be the same without _as().

	See pcmk__assert_alloc() and pcmk__assert_alloc_as() as examples.

5.14.2. Function Definitions

/*
 * (1) The return type goes on its own line
 * (2) The opening brace goes by itself on a line
 * (3) Use "const" with pointer arguments whenever appropriate, to allow the
 * function to be used by more callers.
 */
int
my_func1(const char *s)
{
 return 0;
}

/* Functions with no arguments must explicitly list them as void,
 * for compatibility with strict compilers
 */
int
my_func2(void)
{
 return 0;
}

/*
 * (1) For functions with enough arguments that they must break to the next
 * line, align arguments with the first argument.
 * (2) When a function argument is a function itself, use the pointer form.
 * (3) Declare functions and file-global variables as ``static`` whenever
 * appropriate. This gains a slight efficiency in shared libraries, and
 * helps the reader know that it is not used outside the one file.
 */
static int
my_func3(int bar, const char *a, const char *b, const char *c,
 void (*callback)())
{
 return 0;
}

5.14.3. Return Values

Functions that need to indicate success or failure should follow one of the
following guidelines. More details, including functions for using them in user
messages and converting from one to another, can be found in
include/crm/common/results.h.

	A standard Pacemaker return code is one of the pcmk_rc_* enum values
or a system errno code, as an int.

	crm_exit_t (the CRM_EX_* enum values) is a system-independent code
suitable for the exit status of a process, or for interchange between nodes.

	Other special-purpose status codes exist, such as enum ocf_exitcode for
the possible exit statuses of OCF resource agents (along with some
Pacemaker-specific extensions). It is usually obvious when the context calls
for such.

	Some older Pacemaker APIs use the now-deprecated “legacy” return values of
pcmk_ok or the positive or negative value of one of the pcmk_err_*
constants or system errno codes.

	Functions registered with external libraries (as callbacks for example)
should use the appropriate signature defined by those libraries, rather than
follow Pacemaker guidelines.

Of course, functions may have return values that aren’t success/failure
indicators, such as a pointer, integer count, or bool.

Comparison functions should return

	a negative integer if the first argument should sort first

	0 if its arguments are equal for sorting purposes

	a positive integer is the second argument should sort first

5.14.4. Public API Functions

Unless we are doing a (rare) release where we break public API compatibility,
new public API functions can be added, but existing function signatures (return
type, name, and argument types) should not be changed. To work around this, an
existing function can become a wrapper for a new function.

5.15. Logging and Output

5.15.1. Logging Vs. Output

Log messages and output messages are logically similar but distinct.
Oversimplifying a bit, daemons log, and tools output.

Log messages are intended to help with troubleshooting and debugging.
They may have a high level of technical detail, and are usually filtered by
severity – for example, the system log by default gets messages of notice
level and higher.

Output is intended to let the user know what a tool is doing, and is generally
terser and less technical, and may even be parsed by scripts. Output might have
“verbose” and “quiet” modes, but it is not filtered by severity.

5.15.2. Common Guidelines for All Messages

	When format strings are used for derived data types whose implementation may
vary across platforms (pid_t, time_t, etc.), the safest approach is
to use %lld in the format string, and cast the value to long long.

	Do not rely on %s handling NULL values properly. While the standard
library functions might, not all functions using printf-style formatting
does, and it’s safest to get in the habit of always ensuring format values
are non-NULL. If a value can be NULL, the pcmk__s() function is a
convenient way to say “this string if not NULL otherwise this default”.

	The convenience macros pcmk__plural_s() and pcmk__plural_alt() are
handy when logging a word that may be singular or plural.

5.15.3. Log Levels

When to use each log level:

	critical: fatal error (usually something that would make a daemon exit)

	error: failure of something that affects the cluster (such as a resource
action, fencing action, etc.) or daemon operation

	warning: minor, potential, or recoverable failures (such as something
only affecting a daemon client, or invalid configuration that can be left to
default)

	notice: important successful events (such as a node joining or leaving,
resource action results, or configuration changes)

	info: events that would be helpful with troubleshooting (such as status
section updates or elections)

	debug: information that would be helpful for debugging code or complex
problems

	trace: like debug but for very noisy or low-level stuff

By default, critical through notice are logged to the system log and detail
log, info is logged to the detail log only, and debug and trace are not logged
(if enabled, they go to the detail log only).

5.15.4. Logging

Pacemaker uses libqb for logging, but wraps it with a higher level of
functionality (see include/crm/common/logging*h).

A few macros crm_err(), crm_warn(), etc. do most of the heavy lifting.

By default, Pacemaker sends logs at notice level and higher to the system log,
and logs at info level and higher to the detail log (typically
/var/log/pacemaker/pacemaker.log). The intent is that most users will only
ever need the system log, but for deeper troubleshooting and developer
debugging, the detail log may be helpful, at the cost of being more technical
and difficult to follow.

The same message can have more detail in the detail log than in the system log,
using libqb’s “extended logging” feature:

/* The following will log a simple message in the system log, like:

 warning: Action failed: Node not found

 with extra detail in the detail log, like:

 warning: Action failed: Node not found | rc=-1005 id=hgjjg-51006
*/
crm_warn("Action failed: %s " QB_XS " rc=%d id=%s",
 pcmk_rc_str(rc), rc, id);

5.15.5. Assertion Logging

	pcmk__assert(expr)

	If expr is false, this will call crm_err() with a “Triggered fatal
assertion” message (with details), then abort execution. This should be
used for logic errors that should be impossible (such as a NULL function
argument where not accepted) and environmental errors that can’t be handled
gracefully (for example, memory allocation failures, though returning
ENOMEM is often better).

	CRM_LOG_ASSERT(expr)

	If expr is false, this will generally log a message without aborting. If
the log level is below trace, it just calls crm_err() with a “Triggered
assert” message (with details). If the log level is trace, and the caller is
a daemon, then it will fork a child process in which to dump core, as well as
logging the message. If the log level is trace, and the caller is not a
daemon, then it will behave like pcmk__assert() (i.e. log and abort).
This should be used for logic or protocol errors that require no special
handling.

	CRM_CHECK(expr, failed_action)

	If expr is false, behave like CRM_LOG_ASSERT(expr) (that is, log a
message and dump core if requested) then perform failed_action (which
must not contain continue, break, or errno). This should be used
for logic or protocol errors that can be handled, usually by returning an
error status.

5.15.6. Output

Pacemaker has a somewhat complicated system for tool output. The main benefit
is that the user can select the output format with the --output-as option
(usually “text” for human-friendly output or “xml” for reliably script-parsable
output, though crm_mon additionally supports “console” and “html”).

A custom message can be defined with a unique string identifier, plus
implementation functions for each supported format. The caller invokes the
message using the identifier. The user selects the output format via
--output-as, and the output code automatically calls the appropriate
implementation function. Custom messages are useful when you want to output
messages that are more complex than a one-line error or informational message,
reproducible, and automatically handled by the output formatting system.
Custom messages can contain other custom messages.

Custom message functions are implemented as follows: Start with the macro
PCMK__OUTPUT_ARGS, whose arguments are the message name, followed by the
arguments to the message. Then there is the function declaration, for which the
arguments are the pointer to the current output object, then a variable argument
list.

To output a custom message, you first need to create, i.e. register, the custom
message that you want to output. Either call register_message, which
registers a custom message at runtime, or make use of the collection of
predefined custom messages in fmt_functions, which is defined in
lib/pacemaker/pcmk_output.c. Once you have the message to be outputted,
output it by calling message.

Note: The fmt_functions functions accommodate all of the output formats;
the default implementation accommodates any format that isn’t explicitly
accommodated. The default output provides valid output for any output format,
but you may still want to implement a specific output, i.e. xml, text, or html.
The message function automatically knows which implementation to use,
because the pcmk__output_s contains this information.

The interface (most importantly pcmk__output_t) is declared in
include/crm/common/output*h. See the API comments and existing tools for
examples.

Some of its important member functions are err, which formats error messages
and info, which formats informational messages. Also, list_item,
which formats list items, begin_list, which starts lists, and end_list,
which ends lists, are important because lists can be useful, yet differently
handled by the different output types.

5.16. XML

5.16.1. External Libraries

Pacemaker uses libxml2 [http://xmlsoft.org/html] and
libxslt [http://xmlsoft.org/libxslt/index.html] to process XML. These
libraries implement only version 1.0 of the XML, XPath, and XSLT specifications.

5.16.2. Naming

Names of functions, constants, and enum values related to XML should contain
substrings indicating the type of object they’re used with, according to the
following convention:

	xml: XML subtree, or XML generically

	xe: XML element node, including the attributes belonging to an element

	xa: XML attribute node

	xc: XML comment node

5.16.3. Private Data

Libxml2 data structures such as xmlNode and xmlDoc contain a
void *_private member for application-specific data. Pacemaker uses this
field to store internal bookkeeping data, such as changes relative to another
XML tree, or ACLs.

XML documents, elements, attributes, and comments have private data. The private
data field must be allocated immediately after the node is created and freed
immediately before the node is freed.

5.16.4. Wrapper Functions

Pacemaker provides wrappers for a variety of libxml2 and libxslt functions. They
should be used whenever possible. Some are merely for convenience. However, many
perform additional, Pacemaker-specific tasks, such as change tracking, ACL
checking, and allocation/deallocation of XML documents and private data.

Pacemaker assumes that every XML node is part of a document and has private data
allocated. If libxml2 APIs are used directly instead of the wrapper functions,
Pacemaker may crash with a segmentation fault, or change tracking and ACL
checking may be incorrectly disabled.

5.16.5. XPaths

Separting XPath element names with / (specifying each level in the
hierarchy explicitly) is more efficient than // (allowing intermediate
levels to be omitted), so it should be used whenever practical.

5.17. Makefiles

Pacemaker uses
automake [https://www.gnu.org/software/automake/manual/automake.html]
for building, so the Makefile.am in each directory should be edited rather than
Makefile.in or Makefile, which are automatically generated.

	Public API headers are installed (by adding them to a HEADERS variable in
Makefile.am), but internal API headers are not (by adding them to
noinst_HEADERS).

5.18. vim Settings

Developers who use vim to edit source code can add the following settings
to their ~/.vimrc file to follow Pacemaker C coding guidelines:

" follow Pacemaker coding guidelines when editing C source code files
filetype plugin indent on
au FileType c setlocal expandtab tabstop=4 softtabstop=4 shiftwidth=4 textwidth=80
autocmd BufNewFile,BufRead *.h set filetype=c
let c_space_errors = 1

6. Coding Particular Pacemaker Components

The Pacemaker code can be intricate and difficult to follow. This chapter has
some high-level descriptions of how individual components work.

6.1. Controller

pacemaker-controld is the Pacemaker daemon that utilizes the other daemons
to orchestrate actions that need to be taken in the cluster. It receives CIB
change notifications from the CIB manager, passes the new CIB to the scheduler
to determine whether anything needs to be done, uses the executor and fencer to
execute any actions required, and sets failure counts (among other things) via
the attribute manager.

As might be expected, it has the most code of any of the daemons.

6.1.1. Join sequence

Most daemons track their cluster peers using Corosync’s membership and
CPG only. The controller additionally requires peers to join, which
ensures they are ready to be assigned tasks. Joining proceeds through a series
of phases referred to as the join sequence or join process.

A node’s current join phase is tracked by the join member of crm_node_t
(used in the peer cache). It is an enum crm_join_phase that (ideally)
progresses from the DC’s point of view as follows:

	The node initially starts at crm_join_none

	The DC sends the node a join offer (CRM_OP_JOIN_OFFER), and the node
proceeds to crm_join_welcomed. This can happen in three ways:

	The joining node will send a join announce (CRM_OP_JOIN_ANNOUNCE) at
its controller startup, and the DC will reply to that with a join offer.

	When the DC’s peer status callback notices that the node has joined the
messaging layer, it registers I_NODE_JOIN (which leads to
A_DC_JOIN_OFFER_ONE -> do_dc_join_offer_one() ->
join_make_offer()).

	After certain events (notably a new DC being elected), the DC will send all
nodes join offers (via A_DC_JOIN_OFFER_ALL -> do_dc_join_offer_all()).

These can overlap. The DC can send a join offer and the node can send a join
announce at nearly the same time, so the node responds to the original join
offer while the DC responds to the join announce with a new join offer. The
situation resolves itself after looping a bit.

	The node responds to join offers with a join request
(CRM_OP_JOIN_REQUEST, via do_cl_join_offer_respond() and
join_query_callback()). When the DC receives the request, the
node proceeds to crm_join_integrated (via do_dc_join_filter_offer()).

	As each node is integrated, the current best CIB is sync’ed to each
integrated node via do_dc_join_finalize(). As each integrated node’s CIB
sync succeeds, the DC acks the node’s join request (CRM_OP_JOIN_ACKNAK)
and the node proceeds to crm_join_finalized (via
finalize_sync_callback() + finalize_join_for()).

	Each node confirms the finalization ack (CRM_OP_JOIN_CONFIRM via
do_cl_join_finalize_respond()), including its current resource operation
history (via controld_query_executor_state()). Once the DC receives this
confirmation, the node proceeds to crm_join_confirmed via
do_dc_join_ack().

Once all nodes are confirmed, the DC calls do_dc_join_final(), which checks
for quorum and responds appropriately.

When peers are lost, their join phase is reset to none (in various places).

crm_update_peer_join() updates a node’s join phase.

The DC increments the global current_join_id for each joining round, and
rejects any (older) replies that don’t match.

6.2. Fencer

pacemaker-fenced is the Pacemaker daemon that handles fencing requests. In
the broadest terms, fencing works like this:

	The initiator (an external program such as stonith_admin, or the cluster
itself via the controller) asks the local fencer, “Hey, could you please
fence this node?”

	The local fencer asks all the fencers in the cluster (including itself),
“Hey, what fencing devices do you have access to that can fence this node?”

	Each fencer in the cluster replies with a list of available devices that
it knows about.

	Once the original fencer gets all the replies, it asks the most
appropriate fencer peer to actually carry out the fencing. It may send
out more than one such request if the target node must be fenced with
multiple devices.

	The chosen fencer(s) call the appropriate fencing resource agent(s) to
do the fencing, then reply to the original fencer with the result.

	The original fencer broadcasts the result to all fencers.

	Each fencer sends the result to each of its local clients (including, at
some point, the initiator).

A more detailed description follows.

6.2.1. Initiating a fencing request

A fencing request can be initiated by the cluster or externally, using the
libstonithd API.

	The cluster always initiates fencing via
daemons/controld/controld_fencing.c:te_fence_node() (which calls the
fence() API method). This occurs when a transition graph synapse contains
a CRM_OP_FENCE XML operation.

	The main external clients are stonith_admin and cts-fence-helper.
The DLM project also uses Pacemaker for fencing.

Highlights of the fencing API:

	stonith_api_new() creates and returns a new stonith_t object, whose
cmds member has methods for connect, disconnect, fence, etc.

	the fence() method creates and sends a STONITH_OP_FENCE XML request with
the desired action and target node. Callers do not have to choose or even
have any knowledge about particular fencing devices.

6.2.2. Fencing queries

The function calls for a fencing request go something like this:

The local fencer receives the client’s request via an IPC or messaging
layer callback, which calls

	stonith_command(), which (for requests) calls

	handle_request(), which (for STONITH_OP_FENCE from a client) calls

	initiate_remote_stonith_op(), which creates a STONITH_OP_QUERY XML
request with the target, desired action, timeout, etc. then broadcasts
the operation to the cluster group (i.e. all fencer instances) and
starts a timer. The query is broadcast because (1) location constraints
might prevent the local node from accessing the stonith device directly,
and (2) even if the local node does have direct access, another node
might be preferred to carry out the fencing.

Each fencer receives the original fencer’s STONITH_OP_QUERY broadcast
request via IPC or messaging layer callback, which calls:

	stonith_command(), which (for requests) calls

	handle_request(), which (for STONITH_OP_QUERY from a peer) calls

	stonith_query(), which calls

	get_capable_devices() with stonith_query_capable_device_cb() to add
device information to an XML reply and send it. (A message is
considered a reply if it contains T_STONITH_REPLY, which is only
set by fencer peers, not clients.)

The original fencer receives all peers’ STONITH_OP_QUERY replies via IPC
or messaging layer callback, which calls:

	stonith_command(), which (for replies) calls

	handle_reply() which (for STONITH_OP_QUERY) calls

	process_remote_stonith_query(), which allocates a new query result
structure, parses device information into it, and adds it to the
operation object. It increments the number of replies received for this
operation, and compares it against the expected number of replies (i.e.
the number of active peers), and if this is the last expected reply,
calls

	request_peer_fencing(), which calculates the timeout and sends
STONITH_OP_FENCE request(s) to carry out the fencing. If the target
node has a fencing “topology” (which allows specifications such as
“this node can be fenced either with device A, or devices B and C in
combination”), it will choose the device(s), and send out as many
requests as needed. If it chooses a device, it will choose the peer; a
peer is preferred if it has “verified” access to the desired device,
meaning that it has the device “running” on it and thus has a monitor
operation ensuring reachability.

6.2.3. Fencing operations

Each STONITH_OP_FENCE request goes something like this:

The chosen peer fencer receives the STONITH_OP_FENCE request via
IPC or messaging layer callback, which calls:

	stonith_command(), which (for requests) calls

	handle_request(), which (for STONITH_OP_FENCE from a peer) calls

	stonith_fence(), which calls

	schedule_stonith_command() (using supplied device if
F_STONITH_DEVICE was set, otherwise the highest-priority capable
device obtained via get_capable_devices() with
stonith_fence_get_devices_cb()), which adds the operation to the
device’s pending operations list and triggers processing.

The chosen peer fencer’s mainloop is triggered and calls

	stonith_device_dispatch(), which calls

	stonith_device_execute(), which pops off the next item from the device’s
pending operations list. If acting as the (internally implemented) watchdog
agent, it panics the node, otherwise it calls

	stonith_action_create() and stonith_action_execute_async() to
call the fencing agent.

The chosen peer fencer’s mainloop is triggered again once the fencing agent
returns, and calls

	stonith_action_async_done() which adds the results to an action object
then calls its

	done callback (st_child_done()), which calls schedule_stonith_command()
for a new device if there are further required actions to execute or if the
original action failed, then builds and sends an XML reply to the original
fencer (via send_async_reply()), then checks whether any
pending actions are the same as the one just executed and merges them if so.

6.2.4. Fencing replies

The original fencer receives the STONITH_OP_FENCE reply via IPC or
messaging layer callback, which calls:

	stonith_command(), which (for replies) calls

	handle_reply(), which calls

	fenced_process_fencing_reply(), which calls either
request_peer_fencing() (to retry a failed operation, or try the next
device in a topology if appropriate, which issues a new
STONITH_OP_FENCE request, proceeding as before) or
finalize_op() (if the operation is definitively failed or
successful).

	finalize_op() broadcasts the result to all peers.

Finally, all peers receive the broadcast result and call

	finalize_op(), which sends the result to all local clients.

6.2.5. Fencing History

The fencer keeps a running history of all fencing operations. The bulk of the
relevant code is in fenced_history.c and ensures the history is synchronized
across all nodes even if a node leaves and rejoins the cluster.

In libstonithd, this information is represented by stonith_history_t and is
queryable by the stonith_api_operations_t:history() method. crm_mon and
stonith_admin use this API to display the history.

6.3. Scheduler

pacemaker-schedulerd is the Pacemaker daemon that runs the Pacemaker
scheduler for the controller, but “the scheduler” in general refers to related
library code in libpe_status and libpe_rules (lib/pengine/*.c), and
some of libpacemaker (lib/pacemaker/pcmk_sched_*.c).

The purpose of the scheduler is to take a CIB as input and generate a
transition graph (list of actions that need to be taken) as output.

The controller invokes the scheduler by contacting the scheduler daemon via
local IPC. Tools such as crm_simulate, crm_mon, and
crm_resource can also invoke the scheduler, but do so by calling the
library functions directly. This allows them to run using a CIB_file
without the cluster needing to be active.

The main entry point for the scheduler code is
lib/pacemaker/pcmk_scheduler.c:pcmk__schedule_actions(). It sets
defaults and calls a series of functions for the scheduling. Some key steps:

	unpack_cib() parses most of the CIB XML into data structures, and
determines the current cluster status.

	apply_node_criteria() applies factors that make resources prefer certain
nodes, such as shutdown locks, location constraints, and stickiness.

	pcmk__create_internal_constraints() creates internal constraints, such as
the implicit ordering for group members, or start actions being implicitly
ordered before promote actions.

	pcmk__handle_rsc_config_changes() processes resource history entries in
the CIB status section. This is used to decide whether certain
actions need to be done, such as deleting orphan resources, forcing a restart
when a resource definition changes, etc.

	assign_resources() assigns resources to nodes.

	schedule_resource_actions() schedules resource-specific actions (which
might or might not end up in the final graph).

	pcmk__apply_orderings() processes ordering constraints in order to modify
action attributes such as optional or required.

	pcmk__create_graph() creates the transition graph.

6.3.1. Challenges

Working with the scheduler is difficult. Challenges include:

	It is far too much code to keep more than a small portion in your head at one
time.

	Small changes can have large (and unexpected) effects. This is why we have a
large number of regression tests (cts/cts-scheduler), which should be run
after making code changes.

	It produces an insane amount of log messages at debug and trace levels.
You can put resource ID(s) in the PCMK_trace_tags environment variable to
enable trace-level messages only when related to specific resources.

	Different parts of the main pcmk_scheduler_t structure are finalized at
different points in the scheduling process, so you have to keep in mind
whether information you’re using at one point of the code can possibly change
later. For example, data unpacked from the CIB can safely be used anytime
after unpack_cib(), but actions may become optional or required anytime
before pcmk__create_graph(). There’s no easy way to deal with this.

6.3.2. The Scheduler Object

The main data object for the scheduler is pcmk_scheduler_t, which contains
all information needed about nodes, resources, constraints, etc., both as the
raw CIB XML and parsed into more usable data structures, plus the resulting
transition graph XML. The variable name is usually scheduler.

6.3.3. Resources

pcmk_resource_t is the data object representing cluster resources. It has a
couple of public members for backward compatibility reasons, but most of the
implementation is in the internal pcmk__resource_private_t type.

A resource has a variant: primitive, group, clone, or bundle.

The private resource object has members for two sets of methods,
pcmk__rsc_methods_t from libcrmcommon, and
pcmk__assignment_methods_t whose implementation is internal to
libpacemaker. The actual functions vary by variant.

The resource methods have basic capabilities such as unpacking the resource
XML, and determining the current or planned location of the resource.

The assignment methods have more obscure capabilities needed
for scheduling, such as processing location and ordering constraints. For
example, pcmk__create_internal_constraints() simply calls the
internal_constraints() method for each top-level resource in the cluster.

6.3.4. Nodes

Assignment of resources to nodes is done by choosing the node
with the highest score for a given resource. The scheduler does a bunch
of processing to generate the scores, then the actual assignment is
straightforward.

The scheduler node implementation is a little confusing.

pcmk_node_t (struct pcmk__scored_node) is the primary object used.

It contains two sub-structs, pcmk__node_private_t *priv (which is internal)
and struct pcmk__node_details *details (which is public for backward
compatibility reasons), that contain all node information that is independent
of resource assignment (the node name, etc.).

It contains one other (internal) sub-struct, struct pcmk__node_assignment
*assign, which contains information particular to a specific resource being
assigned.

Node lists are frequently used. For example, pcmk_scheduler_t has a
nodes member which is a list of all nodes in the cluster, and the internal
resource object has an active_nodes member which is a list of all nodes on
which the resource is (or might be) active.

Only the scheduler’s nodes list has the full, original node instances. All
other node lists have shallow copies created by pe__copy_node(), which
share details and priv from the main list (but can differ in their
assign member).

6.3.5. Actions

pcmk_action_t is the data object representing actions that might need to be
taken. These could be resource actions, cluster-wide actions such as fencing a
node, or “pseudo-actions” which are abstractions used as convenient points for
ordering other actions against.

Its (internal) implementation has a flags member which is a bitmask of
enum pcmk__action_flags. The most important of these are
pcmk__action_runnable (if not set, the action is “blocked” and cannot be
added to the transition graph) and pcmk__action_optional (actions with this
set will not be added to the transition graph; actions often start out as
optional, and may become required later).

6.3.6. Colocations

pcmk__colocation_t is the data object representing colocations.

Colocation constraints come into play in these parts of the scheduler code:

	When sorting resources for assignment, so resources with
highest node score are assigned first (see cmp_resources())

	When updating node scores for resource assigment or promotion priority

	When assigning resources, so any resources to be colocated with can be
assigned first, and so colocations affect where the resource is assigned

	When choosing roles for promotable clone instances, so colocations involving
a specific role can affect which instances are promoted

The resource assignment functions have several methods related to colocations:

	apply_coloc_score(): This applies a colocation’s score to either the
dependent’s allowed node scores (if called while resources are being
assigned) or the dependent’s priority (if called while choosing promotable
instance roles). It can behave differently depending on whether it is being
called as the primary’s method or as the dependent’s method.

	add_colocated_node_scores(): This updates a table of nodes for a given
colocation attribute and score. It goes through colocations involving a given
resource, and updates the scores of the nodes in the table with the best
scores of nodes that match up according to the colocation criteria.

	colocated_resources(): This generates a list of all resources involved
in mandatory colocations (directly or indirectly via colocation chains) with
a given resource.

6.3.7. Action Relations

Ordering constraints are simple in concept, but they are one of the most
important, powerful, and difficult to follow aspects of the scheduler code.

pcmk__action_relation_t is the data object representing an ordering, better
thought of as a relationship between two actions, since the relation can be
more complex than just “this one runs after that one”.

For a relation “A then B”, the code generally refers to A as “first” or
“before”, and B as “then” or “after”.

Much of the power comes from enum pcmk__action_relation_flags, which are
flags that determine how a relation behaves. There are many obscure flags with
big effects. A few examples:

	pcmk__ar_none means the relation is disabled and will be ignored. The
value is 0, meaning no flags set, so it must be compared with equality rather
than pcmk_is_set().

	pcmk__ar_ordered without any other flags set means the relation does not
make either action required, so it applies only if they both become required
for other reasons.

	pcmk__ar_then_implies_first means that if action B becomes required for
any reason, then action A will become required as well.

6.3.8. Adding a New Scheduler Regression Test

	Choose a test name.

	Copy the uncompressed input CIB to cts/scheduler/xml/TESTNAME.xml. It’s
helpful to add an XML comment at the top describing the essential features of
the test (which configuration and status scenarios are being tested).

	Edit cts/cts-scheduler.in and add the test name and description to the
TESTS array.

	Run cts/cts-scheduler --update --run TESTNAME to generate the expected
transition graph, scores, etc. Look over the generated files to make sure
they are as expected.

	Commit your changes.

7. C Development Helpers

7.1. Refactoring

Pacemaker uses an optional tool called coccinelle [https://coccinelle.gitlabpages.inria.fr/website/]
to do automatic refactoring. coccinelle is a very complicated tool that can be
difficult to understand, and the existing documentation makes it pretty tough
to get started. Much of the documentation is either aimed at kernel developers
or takes the form of grammars.

However, it can apply very complex transformations across an entire source tree.
This is useful for tasks like code refactoring, changing APIs (number or type of
arguments, etc.), catching functions that should not be called, and changing
existing patterns.

coccinelle is driven by input scripts called semantic patches [https://coccinelle.gitlabpages.inria.fr/website/docs/index.html]
written in its own language. These scripts bear a passing resemblance to source
code patches and tell coccinelle how to match and modify a piece of source
code. They are stored in devel/coccinelle and each script either contains
a single source transformation or several related transformations. In general,
we try to keep these as simple as possible.

In Pacemaker development, we use a couple targets in devel/Makefile.am to
control coccinelle. The cocci target tries to apply each script to every
Pacemaker source file, printing out any changes it would make to the console.
The cocci-inplace target does the same but also makes those changes to the
source files. A variety of warnings might also be printed. If you aren’t working
on a new script, these can usually be ignored.

If you are working on a new coccinelle script, it can be useful (and faster) to
skip everything else and only run the new script. The COCCI_FILES variable
can be used for this:

$ make -C devel COCCI_FILES=coccinelle/new-file.cocci cocci

This variable is also used for preventing some coccinelle scripts in the Pacemaker
source tree from running. Some scripts are disabled because they are not currently
fully working or because they are there as templates. When adding a new script,
remember to add it to this variable if it should always be run.

One complication when writing coccinelle scripts is that certain Pacemaker source
files may not use private functions (those whose name starts with pcmk__).
Handling this requires work in both the Makefile and in the coccinelle scripts.

The Makefile deals with this by maintaining two lists of source files: those that
may use private functions and those that may not. For those that may, a special
argument (-D internal) is added to the coccinelle command line. This creates
a virtual dependency named internal.

In the coccinelle scripts, those transformations that modify source code to use
a private function also have a dependency on internal. If that dependency
was given on the command line, the transformation will be run. Otherwise, it will
be skipped.

This means that not all instances of an older style of code will be changed after
running a given transformation. Some developer intervention is still necessary
to know whether a source code block should have been changed or not.

Probably the easiest way to learn how to use coccinelle is by following other
people’s scripts. In addition to the ones in the Pacemaker source directory,
there’s several others on the coccinelle website [https://coccinelle.gitlabpages.inria.fr/website/rules/].

7.2. Sanitizers

gcc supports a variety of run-time checks called sanitizers. These can be used to
catch programming errors with memory, race conditions, various undefined behavior
conditions, and more. Because these are run-time checks, they should only be used
during development and not in compiled packages or production code.

Certain sanitizers cannot be combined with others because their run-time checks
cause interfere. Instead of trying to figure out which combinations work, it is
simplest to just enable one at a time.

Each supported sanitizer requires an installed libray. In addition to just
enabling the sanitizer, their use can be configured with environment variables.
For example:

$ ASAN_OPTIONS=verbosity=1:replace_str=true crm_mon -1R

Pacemaker supports the following subset of gcc’s sanitizers:

	Sanitizer

	Configure Option

	Library

	Environment Variable

	Address

	–with-sanitizers=asan

	libasan

	ASAN_OPTIONS

	Threads

	–with-sanitizers=tsan

	libtsan

	TSAN_OPTIONS

	Undefined behavior

	–with-sanitizers=ubsan

	libubsan

	UBSAN_OPTIONS

The undefined behavior sanitizer further supports suboptions that need to be
given as CFLAGS when configuring pacemaker:

$ CFLAGS=-fsanitize=integer-divide-by-zero ./configure --with-sanitizers=ubsan

For more information, see the gcc documentation [https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html]
which also provides links to more information on each sanitizer.

7.3. Unit Testing

Where possible, changes to the C side of Pacemaker should be accompanied by unit
tests. Much of Pacemaker cannot effectively be unit tested (and there are other
testing systems used for those parts), but the lib subdirectory is pretty easy
to write tests for.

Pacemaker uses the cmocka unit testing framework [https://cmocka.org/] which looks
a lot like other unit testing frameworks for C and should be fairly familiar. In
addition to regular unit tests, cmocka also gives us the ability to use
mock functions [https://en.wikipedia.org/wiki/Mock_object] for unit testing
functions that would otherwise be difficult to test.

7.3.1. Organization

Pay close attention to the organization and naming of test cases to ensure the
unit tests continue to work as they should.

Tests are spread throughout the source tree, alongside the source code they test.
For instance, all the tests for the source code in lib/common/ are in the
lib/common/tests directory. If there is no tests subdirectory, there are no
tests for that library yet.

Under that directory, there is a Makefile.am and additional subdirectories. Each
subdirectory contains the tests for a single library source file. For instance,
all the tests for lib/common/strings.c are in the lib/common/tests/strings
directory. Note that the test subdirectory does not have a .c suffix. If there
is no test subdirectory, there are no tests for that file yet.

Finally, under that directory, there is a Makefile.am and then various source
files. Each of these source files tests the single function that it is named
after. For instance, lib/common/tests/strings/pcmk__btoa_test.c tests the
pcmk__btoa() function in lib/common/strings.c. If there is no test
source file, there are no tests for that function yet.

The _test suffix on the test source file is important. All tests have this
suffix, which means all the compiled test cases will also end with this suffix.
That lets us ignore all the compiled tests with a single line in .gitignore:

/lib/*/tests/*/*_test

7.3.2. Adding a test

7.3.2.1. Testing a new function in an already testable source file

Follow these steps if you want to test a function in a source file where there
are already other tested functions. For the purposes of this example, we will
add a test for the pcmk__scan_port() function in lib/common/strings.c. As
you can see, there are already tests for other functions in this same file in
the lib/common/tests/strings directory.

	cd into lib/common/tests/strings

	Add the new file to the check_PROGRAMS variable in Makefile.am, making
it something like this:

check_PROGRAMS = \
 pcmk__add_word_test \
 pcmk__btoa_test \
 pcmk__scan_port_test

	Create a new pcmk__scan_port_test.c file, copying the copyright and include
boilerplate from another file in the same directory.

	Continue with the steps in Writing the test.

7.3.2.2. Testing a function in a source file without tests

Follow these steps if you want to test a function in a source file where there
are not already other tested functions, but there are tests for other files in
the same library. For the purposes of this example, we will add a test for the
pcmk_acl_required() function in lib/common/acls.c. At the time of this
documentation being written, no tests existed for that source file, so there
is no lib/common/tests/acls directory.

	Add to AC_CONFIG_FILES in the top-level configure.ac file so the build
process knows to use directory we’re about to create. That variable would
now look something like:

dnl Other files we output
AC_CONFIG_FILES(Makefile \
 ...
 lib/common/tests/Makefile \
 lib/common/tests/acls/Makefile \
 lib/common/tests/agents/Makefile \
 ...
)

	cd into lib/common/tests

	Add to the SUBDIRS variable in Makefile.am, making it something like:

SUBDIRS = agents acls cmdline flags operations strings utils xpath results

	Create a new acls directory, copying the Makefile.am from some other
directory. At this time, each Makefile.am is largely boilerplate with
very little that needs to change from directory to directory.

	cd into acls

	Get rid of any existing values for check_PROGRAMS and set it to
pcmk_acl_required_test like so:

check_PROGRAMS = pcmk_acl_required_test

	Double check that the following includes are at the top of Makefile.am:

include $(top_srcdir)/mk/common.mk
include $(top_srcdir)/mk/tap.mk
include $(top_srcdir)/mk/unittest.mk

	If necessary, settings from those includes can be overridden like so:

AM_TESTS_ENVIRONMENT += PCMK_CTS_CLI_DIR=$(top_srcdir)/cts/cli
AM_CPPFLAGS += -I$(top_srcdir)
LDADD += $(top_builddir)/lib/pengine/libpe_status_test.la

	Follow the steps in Testing a new function in an already testable source file
to create the new pcmk_acl_required_test.c file.

7.3.2.3. Testing a function in a library without tests

Adding a test case for a function in a library that doesn’t have any test cases
to begin with is only slightly more complicated. In general, the steps are the
same as for the previous section, except with an additional layer of directory
creation.

For the purposes of this example, we will add a test case for the
lrmd_send_resource_alert() function in lib/lrmd/lrmd_alerts.c. Note that this
may not be a very good function or even library to write actual unit tests for.

	Add to AC_CONFIG_FILES in the top-level configure.ac file so the build
process knows to use directory we’re about to create. That variable would
now look something like:

dnl Other files we output
AC_CONFIG_FILES(Makefile \
 ...
 lib/lrmd/Makefile \
 lib/lrmd/tests/Makefile \
 lib/services/Makefile \
 ...
)

	cd into lib/lrmd

	Create a SUBDIRS variable in Makefile.am if it doesn’t already exist.
Most libraries should not have this variable already.

SUBDIRS = tests

	Create a new tests directory and add a Makefile.am with the following
contents:

SUBDIRS = lrmd_alerts

	Follow the steps in Testing a function in a source file without tests to create
the rest of the new directory structure.

	Follow the steps in Testing a new function in an already testable source file
to create the new lrmd_send_resource_alert_test.c file.

7.3.2.4. Adding to an existing test case

If all you need to do is add additional test cases to an existing file, none of
the above work is necessary. All you need to do is find the test source file
with the name matching your function and add to it and then follow the
instructions in Writing the test.

7.3.3. Writing the test

A test case file contains a fair amount of boilerplate. For this reason, it’s
usually easiest to just copy an existing file and adapt it to your needs. However,
here’s the basic structure:

/*
 * Copyright 2021 the Pacemaker project contributors
 *
 * The version control history for this file may have further details.
 *
 * This source code is licensed under the GNU Lesser General Public License
 * version 2.1 or later (LGPLv2.1+) WITHOUT ANY WARRANTY.
 */

#include <crm_internal.h>

#include <crm/common/unittest_internal.h>

/* Put your test-specific includes here */

/* Put your test functions here */

PCMK__UNIT_TEST(NULL, NULL,
 /* Register your test functions here */)

Each test-specific function should test one aspect of the library function,
though it can include many assertions if there are many ways of testing that
one aspect. For instance, there might be multiple ways of testing regular
expression matching:

static void
regex(void **state) {
 const char *s1 = "abcd";
 const char *s2 = "ABCD";

 assert_true(pcmk__strcmp(NULL, "a..d", pcmk__str_regex) < 0);
 assert_true(pcmk__strcmp(s1, NULL, pcmk__str_regex) > 0);
 assert_int_equal(pcmk__strcmp(s1, "a..d", pcmk__str_regex), 0);
}

Each test-specific function must also be registered or it will not be called.
This is done with cmocka_unit_test() in the PCMK__UNIT_TEST macro:

PCMK__UNIT_TEST(NULL, NULL,
 cmocka_unit_test(regex))

Most unit tests do not require a setup and teardown function to be executed
around the entire group of tests. On occassion, this may be necessary. Simply
pass those functions in as the first two parameters to PCMK__UNIT_TEST
instead of using NULL.

7.3.4. Assertions

In addition to the assertions provided by cmocka [https://api.cmocka.org/group__cmocka__asserts.html], unittest_internal.h
also provides pcmk__assert_asserts. This macro takes an expression and
verifies that the expression aborts due to a failed call to pcmk__assert()
or some other similar function. It can be used like so:

static void
null_input_variables(void **state)
{
 long long start, end;

 pcmk__assert_asserts(pcmk__parse_ll_range("1234", NULL, &end));
 pcmk__assert_asserts(pcmk__parse_ll_range("1234", &start, NULL));
}

Here, pcmk__parse_ll_range expects non-NULL for its second and third
arguments. If one of those arguments is NULL, pcmk__assert() will fail and
the program will abort. pcmk__assert_asserts checks that the code would
abort and the test passes. If the code does not abort, the test fails.

7.3.5. Running

If you had to create any new files or directories, you will first need to run
./configure from the top level of the source directory. This will regenerate
the Makefiles throughout the tree. If you skip this step, your changes will be
skipped and you’ll be left wondering why the output doesn’t match what you
expected.

To run the tests, simply run make check after previously building the source
with make. The test cases in each directory will be built and then run.
This should not take long. If all the tests succeed, you will be back at the
prompt. Scrolling back through the history, you should see lines like the
following:

PASS: pcmk__strcmp_test 1 - same_pointer
PASS: pcmk__strcmp_test 2 - one_is_null
PASS: pcmk__strcmp_test 3 - case_matters
PASS: pcmk__strcmp_test 4 - case_insensitive
PASS: pcmk__strcmp_test 5 - regex
==
Testsuite summary for pacemaker 2.1.0
==
TOTAL: 33
PASS: 33
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
==
make[7]: Leaving directory '/home/clumens/src/pacemaker/lib/common/tests/strings'

The testing process will quit on the first failed test, and you will see lines
like these:

PASS: pcmk__scan_double_test 3 - trailing_chars
FAIL: pcmk__scan_double_test 4 - typical_case
PASS: pcmk__scan_double_test 5 - double_overflow
PASS: pcmk__scan_double_test 6 - double_underflow
ERROR: pcmk__scan_double_test - exited with status 1
PASS: pcmk__starts_with_test 1 - bad_input
==
Testsuite summary for pacemaker 2.1.0
==
TOTAL: 56
PASS: 54
SKIP: 0
XFAIL: 0
FAIL: 1
XPASS: 0
ERROR: 1
==
See lib/common/tests/strings/test-suite.log
Please report to users@clusterlabs.org
==
make[7]: *** [Makefile:1218: test-suite.log] Error 1
make[7]: Leaving directory '/home/clumens/src/pacemaker/lib/common/tests/strings'

The failure is in lib/common/tests/strings/test-suite.log:

ERROR: pcmk__scan_double_test
=============================

1..6
ok 1 - empty_input_string
PASS: pcmk__scan_double_test 1 - empty_input_string
ok 2 - bad_input_string
PASS: pcmk__scan_double_test 2 - bad_input_string
ok 3 - trailing_chars
PASS: pcmk__scan_double_test 3 - trailing_chars
not ok 4 - typical_case
FAIL: pcmk__scan_double_test 4 - typical_case
0.000000 != 3.000000
pcmk__scan_double_test.c:80: error: Failure!
ok 5 - double_overflow
PASS: pcmk__scan_double_test 5 - double_overflow
ok 6 - double_underflow
PASS: pcmk__scan_double_test 6 - double_underflow
not ok - tests
ERROR: pcmk__scan_double_test - exited with status 1

At this point, you need to determine whether your test case is incorrect or
whether the code being tested is incorrect. Fix whichever is wrong and continue.

7.4. Fuzz Testing

Pacemaker is integrated with the
OSS-Fuzz [https://github.com/google/oss-fuzz] project. OSS-Fuzz calls
selected Pacemaker APIs with random argument values to catch edge cases that
might be missed by other forms of testing.

The OSS-Fuzz project has a contact address for Pacemaker in
projects/pacemaker/project.yaml that will receive bug reports. The address must
have been used to commit to Pacemaker, and should be tied to a Google account.

Open reports that aren’t security-related can be seen at OSS-Fuzz testcases [https://oss-fuzz.com/testcases?project=pacemaker&open=yes].

7.4.1. Fuzzers

Each fuzz-tested library has a fuzzers subdirectory (for example,
lib/common/fuzzers). That directory has a file for each fuzzed source file,
named the same except ending in _fuzzer.c (for example,
lib/common/fuzzers/strings_fuzzer.c has fuzzing for
lib/common/strings.c). Those files are not built or distributed as part of
Pacemaker but are used by OSS-Fuzz (see projects/pacemaker/build.sh in the
OSS-Fuzz repository).

By default, fuzzing uses libFuzzer [https://llvm.org/docs/LibFuzzer.html].
Only Pacemaker APIs that accept any input and do not exit can be fuzzed.
Ideally, fuzzed functions will not modify global state or vary code paths by
anything other than the fuzzed input (such as environment variable values,
date/time, etc.).

7.4.2. Local Fuzzing

You can use OSS-Fuzz locally to run fuzz testing or reproduce issues reported
by OSS-Fuzz.

To prep a test host:

	If podman is installed, it will conflict with Docker, so remove it first.
Example for RHEL-like OSes:

	dnf remove runc

	Install and start Docker. Example for RHEL-like OSes:

	dnf config-manager --add-repo
https://download.docker.com/linux/rhel/docker-ce.repo

	dnf install docker-ce docker-ce-cli containerd.io docker-buildx-plugin
docker-compose-plugin

	usermod -a -G docker $USER

	Clone the OSS-Fuzz repository:

	cd to wherever you want to put it

	git clone https://github.com/google/oss-fuzz.git

	cd oss-fuzz

	Specify the Pacemaker source you want to test:

	Edit projects/pacemaker/Dockerfile and replace the last git clone
with the source that you want to test. For example, if you have a branch
my-fuzzing-branch that you’ve pushed to your GitHub account, you could
use: git clone -b my-fuzzing-branch --single-branch --depth 1
https://github.com/$USER/pacemaker.

To fuzz the code:

	Ensure Docker is running:

	systemctl start docker

	Build the necessary Docker containers:

	python3 infra/helper.py build_image pacemaker

	Build the fuzzers. Choose a sanitizer (for example, SANITIZER=address).
There are three possible sanitizers: address, memory, and undefined. The
memory sanitizer requires special preparation and is generally not used. If
you are reproducing an OSS-Fuzz-reported issue, the issue will list the
sanitizer that was used.

	python3 infra/helper.py build_fuzzers --sanitizer $SANITIZER pacemaker

	Ensure the build succeeded (use the same sanitizer as the previous step):

	python3 infra/helper.py check_build --sanitizer $SANITIZER pacemaker

	If you want to run fuzzing yourself, choose a fuzzer (for example,
FUZZER=iso8601_fuzzer). Create a temporary directory for the fuzzer’s
outputs, then run the fuzzing command, which will fuzz for 25 seconds then
time out:

	rm -rf /tmp/corpus >/dev/null 2>&/dev/null

	mkdir /tmp/corpus

	python3 infra/helper.py run_fuzzer --corpus-dir=/tmp/corpus pacemaker
$FUZZER

	This can be repeated with different fuzzers. The build_fuzzers step
can also be repeated with a different sanitizer, and the fuzzers tested
again.

	If you want to reproduce an OSS-Fuzz-reported issue, make a note of the
fuzzer that was used ($FUZZER in this example) and download the provided
reproducer test case file ($TESTCASE in this example), then run:

	python3 infra/helper.py reproduce pacemaker $FUZZER $TESTCASE

For details, see the OSS-Fuzz documentation [https://google.github.io/oss-fuzz/getting-started/new-project-guide/#testing-locally].

7.5. Code Coverage

Figuring out what needs unit tests written is the purpose of a code coverage tool.
The Pacemaker build process uses lcov and special make targets to generate
an HTML coverage report that can be inspected with any web browser.

To start, you’ll need to install the lcov package which is included in most
distributions. Next, reconfigure the source tree:

$./configure --with-coverage

Then run make -C devel coverage. This will do the same thing as make check,
but will generate a bunch of intermediate files as part of the compiler’s output.
Essentially, the coverage tools run all the unit tests and make a note if a given
line if code is executed as a part of some test program. This will include not
just things run as part of the tests but anything in the setup and teardown
functions as well.

Afterwards, the HTML report will be in coverage/index.html. You can drill down
into individual source files to see exactly which lines are covered and which are
not, which makes it easy to target new unit tests. Note that sometimes, it is
impossible to achieve 100% coverage for a source file. For instance, how do you
test a function with a return type of void that simply returns on some condition?

Note that Pacemaker’s overall code coverage numbers are very low at the moment.
One reason for this is the large amount of code in the daemons directory that
will be very difficult to write unit tests for. For now, it is best to focus
efforts on increasing the coverage on individual libraries.

Additionally, there is a coverage-cts target that does the same thing but
instead of testing make check, it tests cts/cts-cli. The idea behind this
target is to see what parts of our command line tools are covered by our regression
tests. It is probably best to clean and rebuild the source tree when switching
between these various targets.

7.6. Debugging

7.6.1. gdb

If you use gdb for debugging, some helper functions are defined in
devel/gdbhelpers, which can be given to gdb using the -x option.

From within the debugger, you can then invoke the pcmk command that
will describe the helper functions available.

8. Evolution of the project

This section will not generally be of interest, but may occasionally
shed light on why the current code is structured the way it is when
investigating some thorny issue.

8.1. Origin in Heartbeat project

Pacemaker can be considered as a spin-off from Heartbeat, the original
comprehensive high availability suite started by Alan Robertson. Some
portions of code are shared, at least on the conceptual level if not verbatim,
till today, even if the effective percentage continually declines.

Before Pacemaker 2.0, Pacemaker supported Heartbeat as a cluster layer
alternative to Corosync. That support was dropped for the 2.0.0 release (see
commit 55ab749bf [https://github.com/ClusterLabs/pacemaker/commit/55ab749bf0f0143bd1cd050c1bbe302aecb3898e]).

An archive of a 2016 checkout of the Heartbeat code base is shared as a
read-only repository [https://gitlab.com/poki/archived-heartbeat]. Notable
commits include:

	creation of Heartbeat’s “new cluster resource manager,” which evolved into
Pacemaker [https://gitlab.com/poki/archived-heartbeat/commit/bb48551be418291c46980511aa31c7c2df3a85e4]

	deletion of the new CRM from Heartbeat after Pacemaker had been split off [https://gitlab.com/poki/archived-heartbeat/commit/74573ac6182785820d765ec76c5d70086381931a]

Regarding Pacemaker’s split from heartbeat, it evolved stepwise (as opposed to
one-off cut), and the last step of full dependency is depicted in
The Corosync Cluster Engine [https://www.kernel.org/doc/ols/2008/ols2008v1-pages-85-100.pdf#page=14]
paper, fig. 10. This article also provides a good reference regarding wider
historical context of the tangentially (and deeper in some cases) meeting
components around that time.

8.1.1. Influence of Heartbeat on Pacemaker

On a closer look, we can identify these things in common:

	extensive use of data types and functions of
GLib [https://wiki.gnome.org/Projects/GLib]

	Cluster Testing System (CTS), inherited from initial implementation
by Alan Robertson

	…

8.2. Notable Restructuring Steps in the Codebase

File renames may not appear as notable … unless one runs into complicated
git blame and git log scenarios, so some more massive ones may be
stated as well.

	watchdog/’sbd’ functionality spin-off:

	start separating, eb7cce2a1 [https://github.com/ClusterLabs/pacemaker/commit/eb7cce2a172a026336f4ba6c441dedce42f41092]

	finish separating, 5884db780 [https://github.com/ClusterLabs/pacemaker/commit/5884db78080941cdc4e77499bc76677676729484]

	daemons’ rename for 2.0 (in chronological order)

	start of moving daemon sources from their top-level directories under new
/daemons hierarchy, 318a2e003 [https://github.com/ClusterLabs/pacemaker/commit/318a2e003d2369caf10a450fe7a7616eb7ffb264]

	attrd -> pacemaker-attrd, 01563cf26 [https://github.com/ClusterLabs/pacemaker/commit/01563cf2637040e9d725b777f0c42efa8ab075c7]

	lrmd -> pacemaker-execd, 36a00e237 [https://github.com/ClusterLabs/pacemaker/commit/36a00e2376fd50d52c2ccc49483e235a974b161c]

	pacemaker_remoted -> pacemaker-remoted, e4f4a0d64 [https://github.com/ClusterLabs/pacemaker/commit/e4f4a0d64c8b6bbc4961810f2a41383f52eaa116]

	crmd -> pacemaker-controld, db5536e40 [https://github.com/ClusterLabs/pacemaker/commit/db5536e40c77cdfdf1011b837f18e4ad9df45442]

	pengine -> pacemaker-schedulerd, e2fdc2bac [https://github.com/ClusterLabs/pacemaker/commit/e2fdc2baccc3ae07652aac622a83f317597608cd]

	stonithd -> pacemaker-fenced, 038c465e2 [https://github.com/ClusterLabs/pacemaker/commit/038c465e2380c5349fb30ea96c8a7eb6184452e0]

	cib daemon -> pacemaker-based, 50584c234 [https://github.com/ClusterLabs/pacemaker/commit/50584c234e48cd8b99d355ca9349b0dfb9503987]

9. Glossary

	assign

	In the scheduler, this refers to associating a resource with a node. Do
not use allocate for this purpose.

	bundle

	The collective resource type associating instances of a container with
storage and networking. Do not use container when referring to
the bundle as a whole.

	cluster layer

	The layer of the cluster stack that provides membership and
messaging capabilities (such as Corosync).

	cluster stack

	The core components of a high-availability cluster: the
cluster layer at the “bottom” of the stack, then Pacemaker, then
resource agents, and then the actual services managed by the cluster at
the “top” of the stack. Do not use stack for the cluster layer alone.

	CPG

	Corosync Process Group. This is the messaging layer in a Corosync-based
cluster. Pacemaker daemons use CPG to communicate with their counterparts
on other nodes.

	container

	This can mean either a container in the usual sense (whether as a
standalone resource or as part of a bundle), or as the container resource
meta-attribute (which does not necessarily reference a container in the
usual sense).

	dangling migration

	Live migration of a resource consists of a migrate_to action on the
source node, followed by a migrate_from on the target node, followed
by a stop on the source node. If the migrate_to and
migrate_from have completed successfully, but the stop has not
yet been done, the migration is considered to be dangling.

	dependent

	In colocation constraints, this refers to the resource located relative
to the primary resource. Do not use rh or right-hand for this
purpose.

	IPC

	Inter-process communication. In Pacemaker, clients send requests to
daemons using libqb IPC.

	message

	This can refer to log messages, custom messages defined for a
pcmk_output_t object, or XML messages sent via CPG or
IPC.

	metadata

	In the context of options and resource agents, this refers to OCF-style
metadata. Do not use a hyphen except when referring to the OCF-defined
action name meta-data.

	primary

	In colocation constraints, this refers to the resource that the
dependent resource is located relative to. Do not use lh or
left-hand for this purpose.

	primitive

	The fundamental resource type in Pacemaker. Do not use native for this
purpose.

	score

	An integer value constrained between -PCMK_SCORE_INFINITY and
+PCMK_SCORE_INFINITY. Certain strings (such as
PCMK_VALUE_INFINITY) parse as particular score values. Do not use
weight for this purpose.

	self-fencing

	When a node is chosen to execute its own fencing. Do not use suicide
for this purpose.

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | V
 | W
 | X

A

 	
 	
 action

 	relation

 	
 	
 API documentation

 	C

 	assign

B

 	
 	
 boilerplate

 	C

 	Python

 	
 bool

 	C

 	
 	
 booleans

 	C

 	bundle

C

 	
 	C

 	API documentation

 	XML

 	boilerplate

 	bool

 	booleans

 	comment

 	copyright

 	else

 	enum

 	for

 	function

 	gboolean

 	global variable

 	guidelines

 	if

 	library

 	license

 	logging

 	macro

 	memory

 	naming

 	operator

 	output

 	pointer

 	regular expression

 	strings

 	struct

 	switch

 	variable

 	vim settings

 	while

 	whitespace

 	
 	C library

 	libcib

 	libcrmcluster

 	libcrmcommon

 	libcrmservice

 	liblrmd

 	libpacemaker

 	libpe_rules

 	libpe_status

 	libstonithd

 	cluster layer

 	cluster stack

 	
 comment

 	C

 	container

 	controller

 	copyright

 	C

 	Python

 	CPG

D

 	
 	dangling migration

 	dependent

 	
 documentation

 	guidelines

 	
 	download

 	Doxygen

F

 	
 	fence history

 	fencer

 	
 	
 function

 	C

G

 	
 	
 gboolean

 	C

 	git

 	GitHub

 	branch

 	commit message

 	
 	glossary

 	
 guidelines

 	C

 	Python

 	all languages

 	documentation

I

 	
 	IPC

J

 	
 	join

L

 	
 	libcib

 	libcrmcluster

 	libcrmcommon

 	libcrmservice

 	liblrmd

 	libpacemaker, [1]

 	libpe_rules, [1]

 	
 	libpe_status, [1]

 	libstonithd, [1]

 	license

 	C

 	Python

 	
 logging

 	C

M

 	
 	
 macro

 	C

 	mailing list

 	Makefile.am

 	
 	
 memory

 	C

 	message

 	metadata

N

 	
 	
 naming

 	C

O

 	
 	
 operator

 	C

 	
 	
 output

 	C

P

 	
 	pacemaker-controld

 	pacemaker-fenced

 	pacemaker-schedulerd

 	pcmk__action_flags

 	pcmk__action_relation_t

 	pcmk__colocation_t

 	pcmk_action_t

 	pcmk_node_t

 	pcmk_resource_t

 	pcmk_scheduler_t

 	
 	primary

 	primitive

 	Python

 	3

 	boilerplate

 	copyright

 	guidelines

 	license

 	version

 	whitespace

R

 	
 	
 regular expression

 	C

S

 	
 	scheduler

 	score

 	self-fencing

 	
 	source code

 	
 strings

 	C

U

 	
 	unit testing

V

 	
 	
 vim settings

 	C

W

 	
 	
 whitespace

 	C

 	Python

X

 	
 	
 XML

 	C

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Pacemaker Development

 		
 Frequently Asked Questions

 		
 General Guidelines for All Languages

 		
 Copyright

 		
 Terminology

 		
 Documentation Guidelines

 		
 Books

 		
 Python Coding Guidelines

 		
 Python Boilerplate

 		
 Python Version Compatibility

 		
 Formatting Python Code

 		
 C Coding Guidelines

 		
 Code Organization

 		
 Pacemaker Libraries

 		
 Public versus Internal APIs

 		
 API Symbol Naming

 		
 API Header File Naming

 		
 API Documentation

 		
 Public API Deprecation

 		
 C Boilerplate

 		
 Line Formatting

 		
 Comments

 		
 Operators

 		
 Control Statements (if, else, while, for, switch)

 		
 Macros

 		
 Memory Management

 		
 Structures

 		
 Variables

 		
 Pointers

 		
 Globals

 		
 Variable Naming

 		
 Booleans

 		
 String Handling

 		
 Define Constants for Magic Strings

 		
 String-Related Library Functions

 		
 char*, gchar*, and GString

 		
 Regular Expressions

 		
 Enumerations

 		
 Flag groups

 		
 Functions

 		
 Function Naming

 		
 Function Definitions

 		
 Return Values

 		
 Public API Functions

 		
 Logging and Output

 		
 Logging Vs. Output

 		
 Common Guidelines for All Messages

 		
 Log Levels

 		
 Logging

 		
 Assertion Logging

 		
 Output

 		
 XML

 		
 External Libraries

 		
 Naming

 		
 Private Data

 		
 Wrapper Functions

 		
 XPaths

 		
 Makefiles

 		
 vim Settings

 		
 Coding Particular Pacemaker Components

 		
 Controller

 		
 Join sequence

 		
 Fencer

 		
 Initiating a fencing request

 		
 Fencing queries

 		
 Fencing operations

 		
 Fencing replies

 		
 Fencing History

 		
 Scheduler

 		
 Challenges

 		
 The Scheduler Object

 		
 Resources

 		
 Nodes

 		
 Actions

 		
 Colocations

 		
 Action Relations

 		
 Adding a New Scheduler Regression Test

 		
 C Development Helpers

 		
 Refactoring

 		
 Sanitizers

 		
 Unit Testing

 		
 Organization

 		
 Adding a test

 		
 Writing the test

 		
 Assertions

 		
 Running

 		
 Fuzz Testing

 		
 Fuzzers

 		
 Local Fuzzing

 		
 Code Coverage

 		
 Debugging

 		
 gdb

 		
 Evolution of the project

 		
 Origin in Heartbeat project

 		
 Influence of Heartbeat on Pacemaker

 		
 Notable Restructuring Steps in the Codebase

 		
 Glossary

_static/up-pressed.png

_static/up.png

_static/plus.png

