
Clusters from Scratch
Release 3.0.0

the Pacemaker project contributors

Jan 09, 2025

CONTENTS

1 Abstract 3

2 Table of Contents 5
2.1 Introduction . 5

2.1.1 The Scope of This Document . 5
2.1.2 What Is Pacemaker? . 5

2.2 Installation . 10
2.2.1 Install AlmaLinux 9 . 10
2.2.2 Configure the OS . 21
2.2.3 Repeat for Second Node . 23
2.2.4 Configure Communication Between Nodes . 24

2.3 Set up a Cluster . 26
2.3.1 Simplify Administration With a Cluster Shell . 26
2.3.2 Install the Cluster Software . 26
2.3.3 Configure the Cluster Software . 26
2.3.4 Explore pcs . 28

2.4 Start and Verify Cluster . 30
2.4.1 Start the Cluster . 30
2.4.2 Verify Corosync Installation . 31
2.4.3 Verify Pacemaker Installation . 32
2.4.4 Explore the Existing Configuration . 33

2.5 Configure Fencing . 34
2.5.1 What is Fencing? . 34
2.5.2 Choose a Fence Device . 34
2.5.3 Configure the Cluster for Fencing . 35
2.5.4 Example . 35

2.6 Create an Active/Passive Cluster . 38
2.6.1 Add a Resource . 38
2.6.2 Perform a Failover . 39
2.6.3 Prevent Resources from Moving after Recovery . 41

2.7 Add Apache HTTP Server as a Cluster Service . 42
2.7.1 Install Apache . 42
2.7.2 Create Website Documents . 42
2.7.3 Enable the Apache Status URL . 43
2.7.4 Configure the Cluster . 43
2.7.5 Ensure Resources Run on the Same Host . 44
2.7.6 Ensure Resources Start and Stop in Order . 45
2.7.7 Prefer One Node Over Another . 46
2.7.8 Move Resources Manually . 47

2.8 Replicate Storage Using DRBD . 48

i

2.8.1 Install the DRBD Packages . 48
2.8.2 Allocate a Disk Volume for DRBD . 49
2.8.3 Configure DRBD . 50
2.8.4 Initialize DRBD . 51
2.8.5 Populate the DRBD Disk . 53
2.8.6 Configure the Cluster for the DRBD device . 53
2.8.7 Configure the Cluster for the Filesystem . 55
2.8.8 Test Cluster Failover . 56

2.9 Convert Storage to Active/Active . 58
2.9.1 Install Cluster Filesystem Software . 58
2.9.2 Configure the Cluster for the DLM . 58
2.9.3 Create and Populate GFS2 Filesystem . 59
2.9.4 Reconfigure the Cluster for GFS2 . 61
2.9.5 Clone the Filesystem Resource . 62
2.9.6 Test Failover . 63

2.10 Configuration Recap . 63
2.10.1 Final Cluster Configuration . 63
2.10.2 Node List . 66
2.10.3 Cluster Options . 66
2.10.4 Resources . 67

2.11 Sample Corosync Configuration . 69
2.12 Further Reading . 69

3 Index 71

Index 73

ii

Clusters from Scratch, Release 3.0.0

Step-by-Step Instructions for Building Your First High-Availability Cluster

CONTENTS 1

Clusters from Scratch, Release 3.0.0

2 CONTENTS

CHAPTER

ONE

ABSTRACT

This document provides a step-by-step guide to building a simple high-availability cluster using Pacemaker.

The example cluster will use:

• AlmaLinux 9 as the host operating system

• Corosync to provide messaging and membership services

• Pacemaker 2 as the cluster resource manager

• DRBD as a cost-effective alternative to shared storage

• GFS2 as the cluster filesystem (in active/active mode)

Given the graphical nature of the install process, a number of screenshots are included. However, the guide
is primarily composed of commands, the reasons for executing them, and their expected outputs.

3

Clusters from Scratch, Release 3.0.0

4 Chapter 1. Abstract

CHAPTER

TWO

TABLE OF CONTENTS

2.1 Introduction

2.1.1 The Scope of This Document

Computer clusters can be used to provide highly available services or resources. The redundancy of multiple
machines is used to guard against failures of many types.

This document will walk through the installation and setup of simple clusters using the AlmaLinux distri-
bution, version 9.

The clusters described here will use Pacemaker and Corosync to provide resource management and messaging.
Required packages and modifications to their configuration files are described along with the use of the pcs
command line tool for generating the XML used for cluster control.

Pacemaker is a central component and provides the resource management required in these systems. This
management includes detecting and recovering from the failure of various nodes, resources, and services
under its control.

When more in-depth information is required, and for real-world usage, please refer to the Pacemaker Ex-
plained manual.

2.1.2 What Is Pacemaker?

Pacemaker is a high-availability cluster resource manager – software that runs on a set of hosts (a cluster of
nodes) in order to preserve integrity and minimize downtime of desired services (resources).1 It is maintained
by the ClusterLabs community.

Pacemaker’s key features include:

• Detection of and recovery from node- and service-level failures

• Ability to ensure data integrity by fencing faulty nodes

• Support for one or more nodes per cluster

• Support for multiple resource interface standards (anything that can be scripted can be clustered)

• Support (but no requirement) for shared storage

• Support for practically any redundancy configuration (active/passive, N+1, etc.)

• Automatically replicated configuration that can be updated from any node
1 Cluster is sometimes used in other contexts to refer to hosts grouped together for other purposes, such as high-performance

computing (HPC), but Pacemaker is not intended for those purposes.

5

https://www.clusterlabs.org/pacemaker/doc/
https://www.clusterlabs.org/pacemaker/doc/
https://www.ClusterLabs.org/

Clusters from Scratch, Release 3.0.0

• Ability to specify cluster-wide relationships between services, such as ordering, colocation, and anti-
colocation

• Support for advanced service types, such as clones (services that need to be active on multiple nodes),
promotable clones (clones that can run in one of two roles), and containerized services

• Unified, scriptable cluster management tools

Note: Fencing

Fencing, also known as STONITH (an acronym for Shoot The Other Node In The Head), is the ability to
ensure that it is not possible for a node to be running a service. This is accomplished via fence devices
such as intelligent power switches that cut power to the target, or intelligent network switches that cut the
target’s access to the local network.

Pacemaker represents fence devices as a special class of resource.

A cluster cannot safely recover from certain failure conditions, such as an unresponsive node, without fencing.

Cluster Architecture

At a high level, a cluster can be viewed as having these parts (which together are often referred to as the
cluster stack):

• Resources: These are the reason for the cluster’s being – the services that need to be kept highly
available.

• Resource agents: These are scripts or operating system components that start, stop, and monitor
resources, given a set of resource parameters. These provide a uniform interface between Pacemaker
and the managed services.

• Fence agents: These are scripts that execute node fencing actions, given a target and fence device
parameters.

• Cluster membership layer: This component provides reliable messaging, membership, and quorum
information about the cluster. Currently, Pacemaker supports Corosync as this layer.

• Cluster resource manager: Pacemaker provides the brain that processes and reacts to events that
occur in the cluster. These events may include nodes joining or leaving the cluster; resource events
caused by failures, maintenance, or scheduled activities; and other administrative actions. To achieve
the desired availability, Pacemaker may start and stop resources and fence nodes.

• Cluster tools: These provide an interface for users to interact with the cluster. Various command-line
and graphical (GUI) interfaces are available.

Most managed services are not, themselves, cluster-aware. However, many popular open-source cluster
filesystems make use of a common Distributed Lock Manager (DLM), which makes direct use of Corosync
for its messaging and membership capabilities and Pacemaker for the ability to fence nodes.

Pacemaker Architecture

Pacemaker itself is composed of multiple daemons that work together:

• pacemakerd

• pacemaker-attrd

• pacemaker-based

6 Chapter 2. Table of Contents

http://www.corosync.org/

Clusters from Scratch, Release 3.0.0

• pacemaker-controld

• pacemaker-execd

• pacemaker-fenced

• pacemaker-schedulerd

Pacemaker’s main process (pacemakerd) spawns all the other daemons, and respawns them if they unex-
pectedly exit.

The Cluster Information Base (CIB) is an XML representation of the cluster’s configuration and the state
of all nodes and resources. The CIB manager (pacemaker-based) keeps the CIB synchronized across the
cluster, and handles requests to modify it.

The attribute manager (pacemaker-attrd) maintains a database of attributes for all nodes, keeps it syn-
chronized across the cluster, and handles requests to modify them. These attributes are usually recorded in
the CIB.

Given a snapshot of the CIB as input, the scheduler (pacemaker-schedulerd) determines what actions are
necessary to achieve the desired state of the cluster.

The local executor (pacemaker-execd) handles requests to execute resource agents on the local cluster node,
and returns the result.

The fencer (pacemaker-fenced) handles requests to fence nodes. Given a target node, the fencer decides
which cluster node(s) should execute which fencing device(s), and calls the necessary fencing agents (either
directly, or via requests to the fencer peers on other nodes), and returns the result.

2.1. Introduction 7

https://en.wikipedia.org/wiki/XML

Clusters from Scratch, Release 3.0.0

The controller (pacemaker-controld) is Pacemaker’s coordinator, maintaining a consistent view of the
cluster membership and orchestrating all the other components.

Pacemaker centralizes cluster decision-making by electing one of the controller instances as the Designated
Controller (DC). Should the elected DC process (or the node it is on) fail, a new one is quickly established.
The DC responds to cluster events by taking a current snapshot of the CIB, feeding it to the scheduler, then
asking the executors (either directly on the local node, or via requests to controller peers on other nodes)
and the fencer to execute any necessary actions.

Node Redundancy Designs

Pacemaker supports practically any node redundancy configuration including Active/Active, Active/Passive,
N+1, N+M, N-to-1, and N-to-N.

Active/passive clusters with two (or more) nodes using Pacemaker and DRBD are a cost-effective high-
availability solution for many situations. One of the nodes provides the desired services, and if it fails, the
other node takes over.

Pacemaker also supports multiple nodes in a shared-failover design, reducing hardware costs by allowing
several active/passive clusters to be combined and share a common backup node.

8 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
https://en.wikipedia.org/wiki/Distributed_Replicated_Block_Device

Clusters from Scratch, Release 3.0.0

When shared storage is available, every node can potentially be used for failover. Pacemaker can even run
multiple copies of services to spread out the workload. This is sometimes called N-to-N redundancy.

2.1. Introduction 9

Clusters from Scratch, Release 3.0.0

2.2 Installation

2.2.1 Install AlmaLinux 9

Boot the Install Image

Download the latest AlmaLinux 9 DVD ISO by navigating to the AlmaLinux mirrors list, selecting the
latest 9.x version for your machine’s architecture, selecting a download mirror that’s close to you, and finally
selecting the latest .iso file that has “dvd” in its name. Use the image to boot a virtual machine, or burn it
to a DVD or USB drive and boot a physical server from that.

After starting the installation, select your language and keyboard layout at the welcome screen.

Installation Options

At this point, you get a chance to tweak the default installation options.

Click on the SOFTWARE SELECTION section (try saying that 10 times quickly). The default envi-
ronment, Server with GUI, does have add-ons with much of the software we need, but we will change the
environment to a Minimal Install here, so that we can see exactly what software is required later, and
press Done.

10 Chapter 2. Table of Contents

https://mirrors.almalinux.org/isos.html

Clusters from Scratch, Release 3.0.0

Fig. 1: AlmaLinux 9 Installation Welcome Screen

2.2. Installation 11

Clusters from Scratch, Release 3.0.0

Fig. 2: AlmaLinux 9 Installation Summary Screen

12 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Fig. 3: AlmaLinux 9 Software Selection Screen

2.2. Installation 13

Clusters from Scratch, Release 3.0.0

Configure Network

In the NETWORK & HOST NAME section:

• Edit Host Name: as desired. For this example, we will enter pcmk-1.localdomain and then press
Apply.

• Select your network device, press Configure…, select the IPv4 Settings tab, and select Manual
from the Method dropdown menu. Then assign the machine a fixed IP address with an appropriate
netmask, gateway, and DNS server. For this example, we’ll use 192.168.122.101 for the address, 24
for the netmask, and 192.168.122.1 for the gateway and DNS server.

• Press Save.

• Flip the switch to turn your network device on (if it is not on already), and press Done.

Fig. 4: AlmaLinux 9 Network Interface Screen

Important: Do not accept the default network settings. Cluster machines should never obtain an IP
address via DHCP, because DHCP’s periodic address renewal will interfere with Corosync.

14 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Configure Disk

By default, the installer’s automatic partitioning will use LVM (which allows us to dynamically change the
amount of space allocated to a given partition). However, it allocates all free space to the / (a.k.a. root)
partition, which cannot be reduced in size later (dynamic increases are fine).

In order to follow the DRBD and GFS2 portions of this guide, we need to reserve space on each machine for
a replicated volume.

Enter the INSTALLATION DESTINATION section and select the disk where you want to install the
OS. Then under Storage Configuration, select Custom and press Done.

Fig. 5: AlmaLinux 9 Installation Destination Screen

On the MANUAL PARTITIONING screen that comes next, click the option to create mountpoints
automatically. Select the / mountpoint and reduce the Desired Capacity down to 4 GiB or so. (The
installer will not allow you to proceed if the / filesystem is too small to install all required packages.)

Then select Modify… next to the volume group name. In the CONFIGURE VOLUME GROUP dialog
box that appears, change the Size policy to As large as possible, to make the reclaimed space available
inside the LVM volume group. We’ll add the additional volume later.

2.2. Installation 15

Clusters from Scratch, Release 3.0.0

Fig. 6: AlmaLinux 9 Manual Partitioning Screen

16 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Fig. 7: AlmaLinux 9 Configure Volume Group Dialog

2.2. Installation 17

Clusters from Scratch, Release 3.0.0

Press Done. Finally, in the SUMMARY OF CHANGES dialog box, press Accept Changes.

Fig. 8: AlmaLinux 9 Summary of Changes Dialog

Configure Time Synchronization

It is highly recommended to enable NTP on your cluster nodes. Doing so ensures all nodes agree on the
current time and makes reading log files significantly easier.

AlmaLinux will enable NTP automatically. If you want to change any time-related settings (such as time
zone or NTP server), you can do this in the TIME & DATE section. In this example, we configure the
time zone as UTC (Coordinated Universal Time).

Root Password

In order to continue to the next step, a Root Password must be set. Be sure to check the box marked
Allow root SSH login with password.

Press Done. (Depending on the password you chose, you may need to do so twice.)

18 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Fig. 9: AlmaLinux 9 Time & Date Screen

2.2. Installation 19

Clusters from Scratch, Release 3.0.0

Fig. 10: AlmaLinux 9 Root Password Screen

20 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Finish Install

Select Begin Installation. Once it completes, Reboot System as instructed. After the node reboots,
you’ll see a login prompt on the console. Login using root and the password you created earlier.

Fig. 11: AlmaLinux 9 Console Prompt

Note: From here on, we’re going to be working exclusively from the terminal.

2.2.2 Configure the OS

Verify Networking

Ensure that the machine has the static IP address you configured earlier.

2.2. Installation 21

Clusters from Scratch, Release 3.0.0

[root@pcmk-1 ~]# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen␣
↪→1000

link/ether 52:54:00:32:cf:a9 brd ff:ff:ff:ff:ff:ff
inet 192.168.122.101/24 brd 192.168.122.255 scope global noprefixroute enp1s0

valid_lft forever preferred_lft forever
inet6 fe80::c3e1:3ba:959:fa96/64 scope link noprefixroute

valid_lft forever preferred_lft forever

Note: If you ever need to change the node’s IP address from the command line, follow these instructions,
replacing ${conn} with the name of your network connection. You can find the list of all network connection
names by running nmcli con show; you can get details for each connection by running nmcli con show
${conn}.

[root@pcmk-1 ~]# nmcli con mod ${conn} ipv4.addresses "${new_address}"
[root@pcmk-1 ~]# nmcli con up ${conn}

Next, ensure that the routes are as expected:

[root@pcmk-1 ~]# ip route
default via 192.168.122.1 dev enp1s0 proto static metric 100
192.168.122.0/24 dev enp1s0 proto kernel scope link src 192.168.122.101 metric 100

If there is no line beginning with default via, then use nmcli to add a gateway:

[root@pcmk-1 ~]# nmcli con mod ${conn} ipv4.gateway "${new_gateway_addr}"
[root@pcmk-1 ~]# nmcli con up ${conn}

Now, check for connectivity to the outside world. Start small by testing whether we can reach the gateway
we configured.

[root@pcmk-1 ~]# ping -c 1 192.168.122.1
PING 192.168.122.1 (192.168.122.1) 56(84) bytes of data.
64 bytes from 192.168.122.1: icmp_seq=1 ttl=64 time=0.492 ms

--- 192.168.122.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.492/0.492/0.492/0.000 ms

Now try something external; choose a location you know should be available.

[root@pcmk-1 ~]# ping -c 1 www.clusterlabs.org
PING mx1.clusterlabs.org (95.217.104.78) 56(84) bytes of data.
64 bytes from mx1.clusterlabs.org (95.217.104.78): icmp_seq=1 ttl=54 time=134 ms

--- mx1.clusterlabs.org ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 133.987/133.987/133.987/0.000 ms

22 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Login Remotely

The console isn’t a very friendly place to work from, so we will now switch to accessing the machine remotely
via SSH where we can use copy and paste, etc.

From another host, check whether we can see the new host at all:

[gchin@gchin ~]$ ping -c 1 192.168.122.101
PING 192.168.122.101 (192.168.122.101) 56(84) bytes of data.
64 bytes from 192.168.122.101: icmp_seq=1 ttl=64 time=0.344 ms

--- 192.168.122.101 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.344/0.344/0.344/0.000 ms

Next, login as root via SSH.

[gchin@gchin ~]$ ssh root@192.168.122.101
The authenticity of host '192.168.122.101 (192.168.122.101)' can't be established.
ECDSA key fingerprint is SHA256:NBvcRrPDLIt39Rf0Tz4/f2Rd/FA5wUiDOd9bZ9QWWjo.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.122.101' (ECDSA) to the list of known hosts.
root@192.168.122.101's password:
Last login: Tue Jan 10 20:46:30 2021
[root@pcmk-1 ~]#

Apply Updates

Apply any package updates released since your installation image was created:

[root@pcmk-1 ~]# dnf update -y

Use Short Node Names

During installation, we filled in the machine’s fully qualified domain name (FQDN), which can be rather
long when it appears in cluster logs and status output. See for yourself how the machine identifies itself:

[root@pcmk-1 ~]# uname -n
pcmk-1.localdomain

We can use the hostnamectl tool to strip off the domain name:

[root@pcmk-1 ~]# hostnamectl set-hostname $(uname -n | sed s/\\..*//)

Now, check that the machine is using the correct name:

[root@pcmk-1 ~]# uname -n
pcmk-1

You may want to reboot to ensure all updates take effect.

2.2.3 Repeat for Second Node

Repeat the installation steps so far, so that you have two nodes ready to have the cluster software installed.

2.2. Installation 23

Clusters from Scratch, Release 3.0.0

For the purposes of this document, the additional node is called pcmk-2 with address 192.168.122.102.

2.2.4 Configure Communication Between Nodes

Configure Host Name Resolution

Confirm that you can communicate between the two new nodes:

[root@pcmk-1 ~]# ping -c 3 192.168.122.102
PING 192.168.122.102 (192.168.122.102) 56(84) bytes of data.
64 bytes from 192.168.122.102: icmp_seq=1 ttl=64 time=1.22 ms
64 bytes from 192.168.122.102: icmp_seq=2 ttl=64 time=0.795 ms
64 bytes from 192.168.122.102: icmp_seq=3 ttl=64 time=0.751 ms

--- 192.168.122.102 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2054ms
rtt min/avg/max/mdev = 0.751/0.923/1.224/0.214 ms

Now we need to make sure we can communicate with the machines by their name. Add entries for the
machines to /etc/hosts on both nodes. You can add entries for the machines to your DNS server if you
have one, but this can create a single-point-of-failure (SPOF) if the DNS server goes down1. If you add
entries to /etc/hosts, they should look something like the following:

[root@pcmk-1 ~]# grep pcmk /etc/hosts
192.168.122.101 pcmk-1.localdomain pcmk-1
192.168.122.102 pcmk-2.localdomain pcmk-2

We can now verify the setup by again using ping:

[root@pcmk-1 ~]# ping -c 3 pcmk-2
PING pcmk-2.localdomain (192.168.122.102) 56(84) bytes of data.
64 bytes from pcmk-2.localdomain (192.168.122.102): icmp_seq=1 ttl=64 time=0.295 ms
64 bytes from pcmk-2.localdomain (192.168.122.102): icmp_seq=2 ttl=64 time=0.616 ms
64 bytes from pcmk-2.localdomain (192.168.122.102): icmp_seq=3 ttl=64 time=0.809 ms

--- pcmk-2.localdomain ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2043ms
rtt min/avg/max/mdev = 0.295/0.573/0.809/0.212 ms

Configure SSH

SSH is a convenient and secure way to copy files and perform commands remotely. For the purposes of this
guide, we will create a key without a password (using the -N option) so that we can perform remote actions
without being prompted.

Warning: Unprotected SSH keys (those without a password) are not recommended for servers exposed
to the outside world. We use them here only to simplify the demo.

Create a new key and allow anyone with that key to log in:
1 You can also avoid this SPOF by specifying an addr option for each node when creating the cluster. We will discuss this

in a later section.

24 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Creating and Activating a New SSH Key

[root@pcmk-1 ~]# ssh-keygen -f ~/.ssh/id_rsa -N ""
Generating public/private rsa key pair.
Your identification has been saved in /root/.ssh/id_rsa
Your public key has been saved in /root/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:h5AFPmXsGU4woOxRLYHW9lnU2wIQVOxpSRrsXbo/AX8 root@pcmk-1
The key's randomart image is:
+---[RSA 3072]----+
| o+*BX*. |
| .oo+.+*O o |
| .+. +=% O o |
| . . =o%.o . |
| . .S+.. |
| ..o E |
| . o |
| o |
| . |
+----[SHA256]-----+

[root@pcmk-1 ~]# cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Install the key on the other node:

[root@pcmk-1 ~]# ssh-copy-id pcmk-2
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/root/.ssh/id_rsa.pub"
The authenticity of host 'pcmk-2 (192.168.122.102)' can't be established.
ED25519 key fingerprint is SHA256:QkJnJ3fmszY7kAuuZ7wxUC5CC+eQThSCF13XYWnZJPo.
This host key is known by the following other names/addresses:

~/.ssh/known_hosts:1: 192.168.122.102
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are␣
↪→already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is to␣
↪→install the new keys
root@pcmk-2's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'pcmk-2'"
and check to make sure that only the key(s) you wanted were added.

Test that you can now run commands remotely, without being prompted:

[root@pcmk-1 ~]# ssh pcmk-2 -- uname -n
pcmk-2

Finally, repeat this same process on the other node. For convenience, you can also generate an SSH key on
your administrative machine and use ssh-copy-id to copy it to both cluster nodes.

2.2. Installation 25

Clusters from Scratch, Release 3.0.0

2.3 Set up a Cluster

2.3.1 Simplify Administration With a Cluster Shell

In the dark past, configuring Pacemaker required the administrator to read and write XML. In true UNIX
style, there were also a number of different commands that specialized in different aspects of querying and
updating the cluster.

In addition, the various components of the cluster stack (Corosync, Pacemaker, etc.) had to be configured
separately, with different configuration tools and formats.

All of that has been greatly simplified with the creation of higher-level tools, whether command-line or GUIs,
that hide all the mess underneath.

Command-line cluster shells take all the individual aspects required for managing and configuring a cluster,
and pack them into one simple-to-use command-line tool.

They even allow you to queue up several changes at once and commit them all at once.

Two popular command-line shells are pcs and crmsh. Clusters from Scratch is based on pcs because it
comes with AlmaLinux, but both have similar functionality. Choosing a shell or GUI is a matter of personal
preference and what comes with (and perhaps is supported by) your choice of operating system.

2.3.2 Install the Cluster Software

Fire up a shell on both nodes and run the following to activate the High Availability repo.

dnf config-manager --set-enabled highavailability

Important: This document will show commands that need to be executed on both nodes with a simple #
prompt. Be sure to run them on each node individually.

Now, we’ll install pacemaker, pcs, and some other command-line tools that will make our lives easier:

dnf install -y pacemaker pcs psmisc policycoreutils-python3

Note: This document uses pcs for cluster management. Other alternatives, such as crmsh, are available,
but their syntax will differ from the examples used here.

2.3.3 Configure the Cluster Software

Allow cluster services through firewall

On each node, allow cluster-related services through the local firewall:

firewall-cmd --permanent --add-service=high-availability
success
firewall-cmd --reload
success

26 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Note: If you are using iptables directly, or some other firewall solution besides firewalld, simply open
the following ports, which can be used by various clustering components: TCP ports 2224, 3121, and 21064,
and UDP port 5405.

If you run into any problems during testing, you might want to disable the firewall and SELinux entirely
until you have everything working. This may create significant security issues and should not be performed
on machines that will be exposed to the outside world, but may be appropriate during development and
testing on a protected host.

To disable security measures:

[root@pcmk-1 ~]# setenforce 0
[root@pcmk-1 ~]# sed -i.bak "s/SELINUX=enforcing/SELINUX=permissive/g" /etc/selinux/config
[root@pcmk-1 ~]# systemctl mask firewalld.service
[root@pcmk-1 ~]# systemctl stop firewalld.service
[root@pcmk-1 ~]# iptables --flush

Enable pcs Daemon

Before the cluster can be configured, the pcs daemon must be started and enabled to start at boot time on
each node. This daemon works with the pcs command-line interface to manage synchronizing the Corosync
configuration across all nodes in the cluster, among other functions.

Start and enable the daemon by issuing the following commands on each node:

systemctl start pcsd.service
systemctl enable pcsd.service
Created symlink from /etc/systemd/system/multi-user.target.wants/pcsd.service to /usr/lib/systemd/
↪→system/pcsd.service.

The installed packages will create an hacluster user with a disabled password. While this is fine for running
pcs commands locally, the account needs a login password in order to perform such tasks as syncing the
Corosync configuration, or starting and stopping the cluster on other nodes.

This tutorial will make use of such commands, so now we will set a password for the hacluster user, using
the same password on both nodes:

passwd hacluster
Changing password for user hacluster.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

Note: Alternatively, to script this process or set the password on a different machine from the one you’re
logged into, you can use the --stdin option for passwd:

[root@pcmk-1 ~]# ssh pcmk-2 -- 'echo mysupersecretpassword | passwd --stdin hacluster'

Configure Corosync

On either node, use pcs host auth to authenticate as the hacluster user:

2.3. Set up a Cluster 27

Clusters from Scratch, Release 3.0.0

[root@pcmk-1 ~]# pcs host auth pcmk-1 pcmk-2
Username: hacluster
Password:
pcmk-2: Authorized
pcmk-1: Authorized

Next, use pcs cluster setup on the same node to generate and synchronize the Corosync configuration:

[root@pcmk-1 ~]# pcs cluster setup mycluster pcmk-1 pcmk-2
No addresses specified for host 'pcmk-1', using 'pcmk-1'
No addresses specified for host 'pcmk-2', using 'pcmk-2'
Destroying cluster on hosts: 'pcmk-1', 'pcmk-2'...
pcmk-2: Successfully destroyed cluster
pcmk-1: Successfully destroyed cluster
Requesting remove 'pcsd settings' from 'pcmk-1', 'pcmk-2'
pcmk-1: successful removal of the file 'pcsd settings'
pcmk-2: successful removal of the file 'pcsd settings'
Sending 'corosync authkey', 'pacemaker authkey' to 'pcmk-1', 'pcmk-2'
pcmk-1: successful distribution of the file 'corosync authkey'
pcmk-1: successful distribution of the file 'pacemaker authkey'
pcmk-2: successful distribution of the file 'corosync authkey'
pcmk-2: successful distribution of the file 'pacemaker authkey'
Sending 'corosync.conf' to 'pcmk-1', 'pcmk-2'
pcmk-1: successful distribution of the file 'corosync.conf'
pcmk-2: successful distribution of the file 'corosync.conf'
Cluster has been successfully set up.

Note: If you’d like, you can specify an addr option for each node in the pcs cluster setup command.
This will create an explicit name-to-address mapping for each node in /etc/corosync/corosync.conf,
eliminating the need for hostname resolution via DNS, /etc/hosts, and the like.

[root@pcmk-1 ~]# pcs cluster setup mycluster \
pcmk-1 addr=192.168.122.101 pcmk-2 addr=192.168.122.102

If you received an authorization error for either of those commands, make sure you configured the hacluster
user account on each node with the same password.

The final corosync.conf configuration on each node should look something like the sample in Sample
Corosync Configuration.

2.3.4 Explore pcs

Start by taking some time to familiarize yourself with what pcs can do.

[root@pcmk-1 ~]# pcs

Usage: pcs [-f file] [-h] [commands]...
Control and configure pacemaker and corosync.

Options:
-h, --help Display usage and exit.
-f file Perform actions on file instead of active CIB.

Commands supporting the option use the initial state of
the specified file as their input and then overwrite the

(continues on next page)

28 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

(continued from previous page)
file with the state reflecting the requested
operation(s).
A few commands only use the specified file in read-only
mode since their effect is not a CIB modification.

--debug Print all network traffic and external commands run.
--version Print pcs version information. List pcs capabilities if

--full is specified.
--request-timeout Timeout for each outgoing request to another node in

seconds. Default is 60s.
--force Override checks and errors, the exact behavior depends on

the command. WARNING: Using the --force option is
strongly discouraged unless you know what you are doing.

Commands:
cluster Configure cluster options and nodes.
resource Manage cluster resources.
stonith Manage fence devices.
constraint Manage resource constraints.
property Manage pacemaker properties.
acl Manage pacemaker access control lists.
qdevice Manage quorum device provider on the local host.
quorum Manage cluster quorum settings.
booth Manage booth (cluster ticket manager).
status View cluster status.
config View and manage cluster configuration.
pcsd Manage pcs daemon.
host Manage hosts known to pcs/pcsd.
node Manage cluster nodes.
alert Manage pacemaker alerts.
client Manage pcsd client configuration.
dr Manage disaster recovery configuration.
tag Manage pacemaker tags.

As you can see, the different aspects of cluster management are separated into categories. To discover the
functionality available in each of these categories, one can issue the command pcs <CATEGORY> help. Below
is an example of all the options available under the status category.

[root@pcmk-1 ~]# pcs status help

Usage: pcs status [commands]...
View current cluster and resource status
Commands:

[status] [--full] [--hide-inactive]
View all information about the cluster and resources (--full provides
more details, --hide-inactive hides inactive resources).

resources [<resource id | tag id>] [node=<node>] [--hide-inactive]
Show status of all currently configured resources. If --hide-inactive
is specified, only show active resources. If a resource or tag id is
specified, only show status of the specified resource or resources in
the specified tag. If node is specified, only show status of resources
configured for the specified node.

cluster
View current cluster status.

(continues on next page)

2.3. Set up a Cluster 29

Clusters from Scratch, Release 3.0.0

(continued from previous page)
corosync

View current membership information as seen by corosync.

quorum
View current quorum status.

qdevice <device model> [--full] [<cluster name>]
Show runtime status of specified model of quorum device provider. Using
--full will give more detailed output. If <cluster name> is specified,
only information about the specified cluster will be displayed.

booth
Print current status of booth on the local node.

nodes [corosync | both | config]
View current status of nodes from pacemaker. If 'corosync' is
specified, view current status of nodes from corosync instead. If
'both' is specified, view current status of nodes from both corosync &
pacemaker. If 'config' is specified, print nodes from corosync &
pacemaker configuration.

pcsd [<node>]...
Show current status of pcsd on nodes specified, or on all nodes
configured in the local cluster if no nodes are specified.

xml
View xml version of status (output from crm_mon -r -1 -X).

Additionally, if you are interested in the version and supported cluster stack(s) available with your Pacemaker
installation, run:

[root@pcmk-1 ~]# pacemakerd --features
Pacemaker 2.1.2-4.el9 (Build: ada5c3b36e2)
Supporting v3.13.0: agent-manpages cibsecrets corosync-ge-2 default-concurrent-fencing default-

↪→resource-stickiness default-sbd-sync generated-manpages monotonic nagios ncurses remote systemd

2.4 Start and Verify Cluster

2.4.1 Start the Cluster

Now that Corosync is configured, it is time to start the cluster. The command below will start the corosync
and pacemaker services on both nodes in the cluster.

[root@pcmk-1 ~]# pcs cluster start --all
pcmk-1: Starting Cluster...
pcmk-2: Starting Cluster...

Note: An alternative to using the pcs cluster start --all command is to issue either of the below
command sequences on each node in the cluster separately:

pcs cluster start
Starting Cluster...

30 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

or

systemctl start corosync.service
systemctl start pacemaker.service

Important: In this example, we are not enabling the corosync and pacemaker services to start at boot.
If a cluster node fails or is rebooted, you will need to run pcs cluster start [<NODENAME> | --all] to
start the cluster on it. While you can enable the services to start at boot (for example, using pcs cluster
enable [<NODENAME> | --all]), requiring a manual start of cluster services gives you the opportunity to
do a post-mortem investigation of a node failure before returning it to the cluster.

2.4.2 Verify Corosync Installation

First, use corosync-cfgtool to check whether cluster communication is happy:

[root@pcmk-1 ~]# corosync-cfgtool -s
Local node ID 1, transport knet
LINK ID 0 udp

addr = 192.168.122.101
status:

nodeid: 1: localhost
nodeid: 2: connected

We can see here that everything appears normal with our fixed IP address (not a 127.0.0.x loopback
address) listed as the addr, and localhost and connected for the statuses of nodeid 1 and nodeid 2,
respectively.

If you see something different, you might want to start by checking the node’s network, firewall, and SELinux
configurations.

Next, check the membership and quorum APIs:

[root@pcmk-1 ~]# corosync-cmapctl | grep members
runtime.members.1.config_version (u64) = 0
runtime.members.1.ip (str) = r(0) ip(192.168.122.101)
runtime.members.1.join_count (u32) = 1
runtime.members.1.status (str) = joined
runtime.members.2.config_version (u64) = 0
runtime.members.2.ip (str) = r(0) ip(192.168.122.102)
runtime.members.2.join_count (u32) = 1
runtime.members.2.status (str) = joined

[root@pcmk-1 ~]# pcs status corosync

Membership information

Nodeid Votes Name
1 1 pcmk-1 (local)
2 1 pcmk-2

You should see both nodes have joined the cluster.

2.4. Start and Verify Cluster 31

Clusters from Scratch, Release 3.0.0

2.4.3 Verify Pacemaker Installation

Now that we have confirmed that Corosync is functional, we can check the rest of the stack. Pacemaker has
already been started, so verify the necessary processes are running:

[root@pcmk-1 ~]# ps axf
PID TTY STAT TIME COMMAND
2 ? S 0:00 [kthreadd]

...lots of processes...
17121 ? SLsl 0:01 /usr/sbin/corosync -f
17133 ? Ss 0:00 /usr/sbin/pacemakerd
17134 ? Ss 0:00 _ /usr/libexec/pacemaker/pacemaker-based
17135 ? Ss 0:00 _ /usr/libexec/pacemaker/pacemaker-fenced
17136 ? Ss 0:00 _ /usr/libexec/pacemaker/pacemaker-execd
17137 ? Ss 0:00 _ /usr/libexec/pacemaker/pacemaker-attrd
17138 ? Ss 0:00 _ /usr/libexec/pacemaker/pacemaker-schedulerd
17139 ? Ss 0:00 _ /usr/libexec/pacemaker/pacemaker-controld

If that looks OK, check the pcs status output:

[root@pcmk-1 ~]# pcs status
Cluster name: mycluster

WARNINGS:
No stonith devices and stonith-enabled is not false

Cluster Summary:
* Stack: corosync
* Current DC: pcmk-2 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 00:09:55 2022
* Last change: Wed Jul 27 00:07:08 2022 by hacluster via crmd on pcmk-2
* 2 nodes configured
* 0 resource instances configured

Node List:
* Online: [pcmk-1 pcmk-2]

Full List of Resources:
* No resources

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

Finally, ensure there are no start-up errors from corosync or pacemaker (aside from messages relating to
not having STONITH configured, which are OK at this point):

[root@pcmk-1 ~]# journalctl -b | grep -i error

Note: Other operating systems may report startup errors in other locations (for example, /var/log/
messages).

Repeat these checks on the other node. The results should be the same.

32 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

2.4.4 Explore the Existing Configuration

For those who are not of afraid of XML, you can see the raw cluster configuration and status by using the
pcs cluster cib command.

The last XML you’ll see in this document

[root@pcmk-1 ~]# pcs cluster cib

<cib crm_feature_set="3.13.0" validate-with="pacemaker-3.8" epoch="5" num_updates="4" admin_
↪→epoch="0" cib-last-written="Wed Jul 27 00:07:08 2022" update-origin="pcmk-2" update-client=
↪→"crmd" update-user="hacluster" have-quorum="1" dc-uuid="2">
<configuration>
<crm_config>
<cluster_property_set id="cib-bootstrap-options">
<nvpair id="cib-bootstrap-options-have-watchdog" name="have-watchdog" value="false"/>
<nvpair id="cib-bootstrap-options-dc-version" name="dc-version" value="2.1.2-4.el9-

↪→ada5c3b36e2"/>
<nvpair id="cib-bootstrap-options-cluster-infrastructure" name="cluster-infrastructure"␣

↪→value="corosync"/>
<nvpair id="cib-bootstrap-options-cluster-name" name="cluster-name" value="mycluster"/>

</cluster_property_set>
</crm_config>
<nodes>

<node id="1" uname="pcmk-1"/>
<node id="2" uname="pcmk-2"/>

</nodes>
<resources/>
<constraints/>
<rsc_defaults>

<meta_attributes id="build-resource-defaults">
<nvpair id="build-resource-stickiness" name="resource-stickiness" value="1"/>

</meta_attributes>
</rsc_defaults>

</configuration>
<status>
<node_state id="2" uname="pcmk-2" in_ccm="true" crmd="online" crm-debug-origin="do_state_

↪→transition" join="member" expected="member">
<lrm id="2">

<lrm_resources/>
</lrm>

</node_state>
<node_state id="1" uname="pcmk-1" in_ccm="true" crmd="online" crm-debug-origin="do_state_

↪→transition" join="member" expected="member">
<lrm id="1">

<lrm_resources/>
</lrm>

</node_state>
</status>

</cib>

Before we make any changes, it’s a good idea to check the validity of the configuration.

[root@pcmk-1 ~]# pcs cluster verify --full
Error: invalid cib:
(unpack_resources) error: Resource start-up disabled since no STONITH resources have been defined

(continues on next page)

2.4. Start and Verify Cluster 33

Clusters from Scratch, Release 3.0.0

(continued from previous page)
(unpack_resources) error: Either configure some or disable STONITH with the stonith-enabled option
(unpack_resources) error: NOTE: Clusters with shared data need STONITH to ensure data integrity
crm_verify: Errors found during check: config not valid

Error: Errors have occurred, therefore pcs is unable to continue

As you can see, the tool has found some errors. The cluster will not start any resources until we configure
STONITH.

2.5 Configure Fencing

2.5.1 What is Fencing?

Fencing protects your data from being corrupted, and your application from becoming unavailable, due to
unintended concurrent access by rogue nodes.

Just because a node is unresponsive doesn’t mean it has stopped accessing your data. The only way to be
100% sure that your data is safe, is to use fencing to ensure that the node is truly offline before allowing the
data to be accessed from another node.

Fencing also has a role to play in the event that a clustered service cannot be stopped. In this case, the
cluster uses fencing to force the whole node offline, thereby making it safe to start the service elsewhere.

Fencing is also known as STONITH, an acronym for “Shoot The Other Node In The Head”, since the most
popular form of fencing is cutting a host’s power.

In order to guarantee the safety of your data1, fencing is enabled by default.

Note: It is possible to tell the cluster not to use fencing, by setting the stonith-enabled cluster property
to false:

[root@pcmk-1 ~]# pcs property set stonith-enabled=false
[root@pcmk-1 ~]# pcs cluster verify --full

However, this is completely inappropriate for a production cluster. It tells the cluster to simply pretend that
failed nodes are safely powered off. Some vendors will refuse to support clusters that have fencing disabled.
Even disabling it for a test cluster means you won’t be able to test real failure scenarios.

2.5.2 Choose a Fence Device

The two broad categories of fence device are power fencing, which cuts off power to the target, and fabric
fencing, which cuts off the target’s access to some critical resource, such as a shared disk or access to the
local network.

Power fencing devices include:

• Intelligent power switches

• IPMI

• Hardware watchdog device (alone, or in combination with shared storage used as a “poison pill”
mechanism)

1 If the data is corrupt, there is little point in continuing to make it available.

34 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Fabric fencing devices include:

• Shared storage that can be cut off for a target host by another host (for example, an external storage
device that supports SCSI-3 persistent reservations)

• Intelligent network switches

Using IPMI as a power fencing device may seem like a good choice. However, if the IPMI shares power
and/or network access with the host (such as most onboard IPMI controllers), a power or network failure
will cause both the host and its fencing device to fail. The cluster will be unable to recover, and must stop
all resources to avoid a possible split-brain situation.

Likewise, any device that relies on the machine being active (such as SSH-based “devices” sometimes used
during testing) is inappropriate, because fencing will be required when the node is completely unresponsive.
(Fence agents like fence_ilo_ssh, which connects via SSH to an HP iLO but not to the cluster node, are
fine.)

2.5.3 Configure the Cluster for Fencing

1. Install the fence agent(s). To see what packages are available, run dnf search fence-. Be sure to
install the package(s) on all cluster nodes.

2. Configure the fence device itself to be able to fence your nodes and accept fencing requests. This
includes any necessary configuration on the device and on the nodes, and any firewall or SELinux
changes needed. Test the communication between the device and your nodes.

3. Find the name of the correct fence agent: pcs stonith list

4. Find the parameters associated with the device: pcs stonith describe <AGENT_NAME>

5. Create a local copy of the CIB: pcs cluster cib stonith_cfg

6. Create the fencing resource: pcs -f stonith_cfg stonith create <STONITH_ID>
<STONITH_DEVICE_TYPE> [STONITH_DEVICE_OPTIONS]

Any flags that do not take arguments, such as --ssl, should be passed as ssl=1.

7. Ensure fencing is enabled in the cluster: pcs -f stonith_cfg property set
stonith-enabled=true

8. If the device does not know how to fence nodes based on their cluster node name, you may also need
to set the special pcmk_host_map parameter. See man pacemaker-fenced for details.

9. If the device does not support the list command, you may also need to set the special pcmk_host_list
and/or pcmk_host_check parameters. See man pacemaker-fenced for details.

10. If the device does not expect the target to be specified with the port parameter, you may also need
to set the special pcmk_host_argument parameter. See man pacemaker-fenced for details.

11. Commit the new configuration: pcs cluster cib-push stonith_cfg

12. Once the fence device resource is running, test it (you might want to stop the cluster on that machine
first): pcs stonith fence <NODENAME>

2.5.4 Example

For this example, assume we have a chassis containing four nodes and a separately powered IPMI device
active on 10.0.0.1. Following the steps above would go something like this:

Step 1: Install the fence-agents-ipmilan package on both nodes.

2.5. Configure Fencing 35

Clusters from Scratch, Release 3.0.0

Step 2: Configure the IP address, authentication credentials, etc. in the IPMI device itself.

Step 3: Choose the fence_ipmilan STONITH agent.

Step 4: Obtain the agent’s possible parameters:

[root@pcmk-1 ~]# pcs stonith describe fence_ipmilan
fence_ipmilan - Fence agent for IPMI

fence_ipmilan is an I/O Fencing agentwhich can be used with machines controlled by IPMI.This agent␣
↪→calls support software ipmitool (http://ipmitool.sf.net/). WARNING! This fence agent might␣
↪→report success before the node is powered off. You should use -m/method onoff if your fence␣
↪→device works correctly with that option.

Stonith options:
auth: IPMI Lan Auth type.
cipher: Ciphersuite to use (same as ipmitool -C parameter)
hexadecimal_kg: Hexadecimal-encoded Kg key for IPMIv2 authentication
ip: IP address or hostname of fencing device
ipport: TCP/UDP port to use for connection with device
lanplus: Use Lanplus to improve security of connection
method: Method to fence
password: Login password or passphrase
password_script: Script to run to retrieve password
plug: IP address or hostname of fencing device (together with --port-as-ip)
privlvl: Privilege level on IPMI device
target: Bridge IPMI requests to the remote target address
username: Login name
quiet: Disable logging to stderr. Does not affect --verbose or --debug-file or logging to syslog.
verbose: Verbose mode. Multiple -v flags can be stacked on the command line (e.g., -vvv) to␣

↪→increase verbosity.
verbose_level: Level of debugging detail in output. Defaults to the number of --verbose flags␣

↪→specified on the command line, or to 1 if verbose=1 in a stonith device configuration (i.e., on␣
↪→stdin).
debug_file: Write debug information to given file
delay: Wait X seconds before fencing is started
disable_timeout: Disable timeout (true/false) (default: true when run from Pacemaker 2.0+)
ipmitool_path: Path to ipmitool binary
login_timeout: Wait X seconds for cmd prompt after login
port_as_ip: Make "port/plug" to be an alias to IP address
power_timeout: Test X seconds for status change after ON/OFF
power_wait: Wait X seconds after issuing ON/OFF
shell_timeout: Wait X seconds for cmd prompt after issuing command
stonith_status_sleep: Sleep X seconds between status calls during a STONITH action
ipmitool_timeout: Timeout (sec) for IPMI operation
retry_on: Count of attempts to retry power on
use_sudo: Use sudo (without password) when calling 3rd party software
sudo_path: Path to sudo binary
pcmk_host_map: A mapping of host names to ports numbers for devices that do not support host␣

↪→names. Eg. node1:1;node2:2,3 would tell the cluster to use port 1 for node1 and ports 2 and 3␣
↪→for node2
pcmk_host_list: A list of machines controlled by this device (Optional unless pcmk_host_

↪→check=static-list).
pcmk_host_check: How to determine which machines are controlled by the device. Allowed values:␣

↪→dynamic-list (query the device via the 'list' command), static-list (check the pcmk_host_list␣
↪→attribute), status

(query the device via the 'status' command), none (assume every device can␣
↪→fence every machine)
pcmk_delay_max: Enable a delay of no more than the time specified before executing fencing␣

↪→actions. Pacemaker derives the overall delay by taking the value of pcmk_delay_base and adding a␣
↪→random delay value

(continues on next page)

36 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

(continued from previous page)
such that the sum is kept below this maximum. This prevents double fencing when␣

↪→using slow devices such as sbd. Use this to enable a random delay for fencing actions. The␣
↪→overall delay is

derived from this random delay value adding a static delay so that the sum is␣
↪→kept below the maximum delay.
pcmk_delay_base: Enable a base delay for fencing actions and specify base delay value. This␣

↪→enables a static delay for fencing actions, which can help avoid "death matches" where two nodes␣
↪→try to fence each

other at the same time. If pcmk_delay_max is also used, a random delay will be␣
↪→added such that the total delay is kept below that value. This can be set to a single time value␣
↪→to apply to any

node targeted by this device (useful if a separate device is configured for␣
↪→each target), or to a node map (for example, "node1:1s;node2:5") to set a different value per␣
↪→target.
pcmk_action_limit: The maximum number of actions can be performed in parallel on this device␣

↪→Cluster property concurrent-fencing=true needs to be configured first. Then use this to specify␣
↪→the maximum number

of actions can be performed in parallel on this device. -1 is unlimited.

Default operations:
monitor: interval=60s

Step 5: pcs cluster cib stonith_cfg

Step 6: Here are example parameters for creating our fence device resource:

[root@pcmk-1 ~]# pcs -f stonith_cfg stonith create ipmi-fencing fence_ipmilan \
pcmk_host_list="pcmk-1 pcmk-2" ipaddr=10.0.0.1 login=testuser \
passwd=acd123 op monitor interval=60s

[root@pcmk-1 ~]# pcs -f stonith_cfg stonith
* ipmi-fencing (stonith:fence_ipmilan): Stopped

Steps 7-10: Enable fencing in the cluster:

[root@pcmk-1 ~]# pcs -f stonith_cfg property set stonith-enabled=true
[root@pcmk-1 ~]# pcs -f stonith_cfg property
Cluster Properties:
cluster-infrastructure: corosync
cluster-name: mycluster
dc-version: 2.0.5-4.el8-ba59be7122
have-watchdog: false
stonith-enabled: true

Step 11: pcs cluster cib-push stonith_cfg --config

Step 12: Test:

[root@pcmk-1 ~]# pcs cluster stop pcmk-2
[root@pcmk-1 ~]# pcs stonith fence pcmk-2

After a successful test, login to any rebooted nodes, and start the cluster (with pcs cluster start).

2.5. Configure Fencing 37

Clusters from Scratch, Release 3.0.0

2.6 Create an Active/Passive Cluster

2.6.1 Add a Resource

Our first resource will be a floating IP address that the cluster can bring up on either node. Regardless
of where any cluster service(s) are running, end users need to be able to communicate with them at a
consistent address. Here, we will use 192.168.122.120 as the floating IP address, give it the imaginative
name ClusterIP, and tell the cluster to check whether it is still running every 30 seconds.

Warning: The chosen address must not already be in use on the network, on a cluster node or elsewhere.
Do not reuse an IP address one of the nodes already has configured.

[root@pcmk-1 ~]# pcs resource create ClusterIP ocf:heartbeat:IPaddr2 \
ip=192.168.122.120 cidr_netmask=24 op monitor interval=30s

Another important piece of information here is ocf:heartbeat:IPaddr2. This tells Pacemaker three things
about the resource you want to add:

• The first field (ocf in this case) is the standard to which the resource agent conforms and where to
find it.

• The second field (heartbeat in this case) is known as the provider. Currently, this field is supported
only for OCF resources. It tells Pacemaker which OCF namespace the resource script is in.

• The third field (IPaddr2 in this case) is the name of the resource agent, the executable file responsible
for starting, stopping, monitoring, and possibly promoting and demoting the resource.

To obtain a list of the available resource standards (the ocf part of ocf:heartbeat:IPaddr2), run:

[root@pcmk-1 ~]# pcs resource standards
lsb
ocf
service
systemd

To obtain a list of the available OCF resource providers (the heartbeat part of ocf:heartbeat:IPaddr2),
run:

[root@pcmk-1 ~]# pcs resource providers
heartbeat
openstack
pacemaker

Finally, if you want to see all the resource agents available for a specific OCF provider (the IPaddr2 part of
ocf:heartbeat:IPaddr2), run:

[root@pcmk-1 ~]# pcs resource agents ocf:heartbeat
apache
conntrackd
corosync-qnetd
.
. (skipping lots of resources to save space)
.
VirtualDomain
Xinetd

38 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

If you want to list all resource agents available on the system, run pcs resource list. We’ll skip that here.

Now, verify that the IP resource has been added, and display the cluster’s status to see that it is now active.
Note: There should be a stonith device by now, but it’s okay if it doesn’t look like the one below.

[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 00:37:28 2022
* Last change: Wed Jul 27 00:37:14 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 2 resource instances configured

Node List:
* Online: [pcmk-1 pcmk-2]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-2

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

On the node where the ClusterIP resource is running, verify that the address has been added.

[root@pcmk-2 ~]# ip -o addr show
1: lo inet 127.0.0.1/8 scope host lo\ valid_lft forever preferred_lft forever
1: lo inet6 ::1/128 scope host \ valid_lft forever preferred_lft forever
2: enp1s0 inet 192.168.122.102/24 brd 192.168.122.255 scope global noprefixroute enp1s0\ ␣
↪→valid_lft forever preferred_lft forever
2: enp1s0 inet 192.168.122.120/24 brd 192.168.122.255 scope global secondary enp1s0\ ␣
↪→valid_lft forever preferred_lft forever
2: enp1s0 inet6 fe80::5054:ff:fe95:209/64 scope link noprefixroute \ valid_lft forever␣
↪→preferred_lft forever

2.6.2 Perform a Failover

Since our ultimate goal is high availability, we should test failover of our new resource before moving on.

First, from the pcs status output in the previous step, find the node on which the IP address is running.
You can see that the status of the ClusterIP resource is Started on a particular node (in this example,
pcmk-2). Shut down pacemaker and corosync on that machine to trigger a failover.

[root@pcmk-2 ~]# pcs cluster stop pcmk-2
pcmk-2: Stopping Cluster (pacemaker)...
pcmk-2: Stopping Cluster (corosync)...

Note: A cluster command such as pcs cluster stop <NODENAME> can be run from any node in the
cluster, not just the node where the cluster services will be stopped. Running pcs cluster stop without a
<NODENAME> stops the cluster services on the local host. The same is true for pcs cluster start and many
other such commands.

2.6. Create an Active/Passive Cluster 39

Clusters from Scratch, Release 3.0.0

Verify that pacemaker and corosync are no longer running:

[root@pcmk-2 ~]# pcs status
Error: error running crm_mon, is pacemaker running?

Could not connect to pacemakerd: Connection refused
crm_mon: Connection to cluster failed: Connection refused

Go to the other node, and check the cluster status.

[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 00:43:51 2022
* Last change: Wed Jul 27 00:43:14 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 2 resource instances configured

Node List:
* Online: [pcmk-1]
* OFFLINE: [pcmk-2]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

Notice that pcmk-2 is OFFLINE for cluster purposes (its pcsd is still active, allowing it to receive pcs com-
mands, but it is not participating in the cluster).

Also notice that ClusterIP is now running on pcmk-1 – failover happened automatically, and no errors are
reported.

Quorum

If a cluster splits into two (or more) groups of nodes that can no longer communicate with each other
(a.k.a. partitions), quorum is used to prevent resources from starting on more nodes than desired, which
would risk data corruption.

A cluster has quorum when more than half of all known nodes are online in the same partition, or for the
mathematically inclined, whenever the following inequality is true:
total_nodes < 2 * active_nodes

For example, if a 5-node cluster split into 3- and 2-node paritions, the 3-node partition would have quorum
and could continue serving resources. If a 6-node cluster split into two 3-node partitions, neither partition
would have quorum; Pacemaker’s default behavior in such cases is to stop all resources, in order to prevent
data corruption.

Two-node clusters are a special case. By the above definition, a two-node cluster would only have quorum
when both nodes are running. This would make the creation of a two-node cluster pointless. However,
Corosync has the ability to require only one node for quorum in a two-node cluster.

40 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

The pcs cluster setup command will automatically configure two_node: 1 in corosync.conf, so a
two-node cluster will “just work”.

Note: You might wonder, “What if the nodes in a two-node cluster can’t communicate with each
other? Wouldn’t this two_node: 1 setting create a split-brain scenario, in which each node has quorum
separately and they both try to manage the same cluster resources?”

As long as fencing is configured, there is no danger of this. If the nodes lose contact with each other, each
node will try to fence the other node. Resource management is disabled until fencing succeeds; neither
node is allowed to start, stop, promote, or demote resources.

After fencing succeeds, the surviving node can safely recover any resources that were running on the fenced
node.

If the fenced node boots up and rejoins the cluster, it does not have quorum until it can communicate with
the surviving node at least once. This prevents “fence loops,” in which a node gets fenced, reboots, rejoins
the cluster, and fences the other node. This protective behavior is controlled by the wait_for_all: 1
option, which is enabled automatically when two_node: 1 is configured.

If you are using a different cluster shell, you may have to configure corosync.conf appropriately yourself.

Now, simulate node recovery by restarting the cluster stack on pcmk-2, and check the cluster’s status. (It
may take a little while before the cluster gets going on the node, but it eventually will look like the below.)

[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 00:45:17 2022
* Last change: Wed Jul 27 00:45:01 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 2 resource instances configured

Node List:
* Online: [pcmk-1 pcmk-2]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

2.6.3 Prevent Resources from Moving after Recovery

In most circumstances, it is highly desirable to prevent healthy resources from being moved around the
cluster. Moving resources almost always requires a period of downtime. For complex services such as
databases, this period can be quite long.

To address this, Pacemaker has the concept of resource stickiness, which controls how strongly a service
prefers to stay running where it is. You may like to think of it as the “cost” of any downtime. By default,1

1 Zero resource stickiness is Pacemaker’s default if you remove the default value that was created at cluster setup time, or if

2.6. Create an Active/Passive Cluster 41

Clusters from Scratch, Release 3.0.0

Pacemaker assumes there is zero cost associated with moving resources and will do so to achieve “optimal”2

resource placement. We can specify a different stickiness for every resource, but it is often sufficient to change
the default.

In AlmaLinux 9, the cluster setup process automatically configures a default resource stickiness score of
1. This is sufficient to prevent healthy resources from moving around the cluster when there are no user-
configured constraints that influence where Pacemaker prefers to run those resources.

[root@pcmk-1 ~]# pcs resource defaults
Meta Attrs: build-resource-defaults

resource-stickiness=1

For this example, we will increase the default resource stickiness to 100. Later in this guide, we will configure
a location constraint with a score lower than the default resource stickiness.

[root@pcmk-1 ~]# pcs resource defaults update resource-stickiness=100
Warning: Defaults do not apply to resources which override them with their own defined values
[root@pcmk-1 ~]# pcs resource defaults
Meta Attrs: build-resource-defaults
resource-stickiness=100

2.7 Add Apache HTTP Server as a Cluster Service

Now that we have a basic but functional active/passive two-node cluster, we’re ready to add some real
services. We’re going to start with Apache HTTP Server because it is a feature of many clusters and is
relatively simple to configure.

2.7.1 Install Apache

Before continuing, we need to make sure Apache is installed on both hosts. We will also allow the cluster to
use the wget tool (this is the default, but curl is also supported) to check the status of the Apache server.
We’ll install httpd (Apache) and wget now.

dnf install -y httpd wget
firewall-cmd --permanent --add-service=http
firewall-cmd --reload

Important: Do not enable the httpd service. Services that are intended to be managed via the cluster
software should never be managed by the OS. It is often useful, however, to manually start the service,
verify that it works, then stop it again, before adding it to the cluster. This allows you to resolve any
non-cluster-related problems before continuing. Since this is a simple example, we’ll skip that step here.

2.7.2 Create Website Documents

We need to create a page for Apache to serve. On AlmaLinux 9, the default Apache document root is
/var/www/html, so we’ll create an index file there. For the moment, we will simplify things by serving a
static site and manually synchronizing the data between the two nodes, so run this command on both nodes:
you’re using an older version of Pacemaker that doesn’t create this value at setup time.

2 Pacemaker’s default definition of “optimal” may not always agree with yours. The order in which Pacemaker processes
lists of resources and nodes creates implicit preferences in situations where the administrator has not explicitly specified them.

42 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

cat <<-END >/var/www/html/index.html
<html>
<body>My Test Site - $(hostname)</body>
</html>
END

2.7.3 Enable the Apache Status URL

Pacemaker uses the apache resource agent to monitor the health of your Apache instance via the
server-status URL, and to recover the instance if it fails. On both nodes, configure this URL as fol-
lows:

cat <<-END >/etc/httpd/conf.d/status.conf
<Location /server-status>

SetHandler server-status
Require local

</Location>
END

Note: If you are using a different operating system, server-status may already be enabled or may be
configurable in a different location. If you are using a version of Apache HTTP Server less than 2.4, the
syntax will be different.

2.7.4 Configure the Cluster

At this point, Apache is ready to go, and all that needs to be done is to add it to the cluster. Let’s call the
resource WebSite. We need to use an OCF resource agent called apache in the heartbeat namespace1. The
script’s only required parameter is the path to the main Apache configuration file, and we’ll tell the cluster
to check once a minute that Apache is still running.

[root@pcmk-1 ~]# pcs resource create WebSite ocf:heartbeat:apache \
configfile=/etc/httpd/conf/httpd.conf \
statusurl="http://localhost/server-status" \
op monitor interval=1min

By default, the operation timeout for all resources’ start, stop, monitor, and other operations is 20 seconds.
In many cases, this timeout period is less than a particular resource’s advised timeout period. For the
purposes of this tutorial, we will adjust the global operation timeout default to 240 seconds.

[root@pcmk-1 ~]# pcs resource op defaults
No defaults set
[root@pcmk-1 ~]# pcs resource op defaults update timeout=240s
Warning: Defaults do not apply to resources which override them with their own defined values
[root@pcmk-1 ~]# pcs resource op defaults
Meta Attrs: op_defaults-meta_attributes
timeout: 240s

Note: In a production cluster, it is usually better to adjust each resource’s start, stop, and monitor timeouts
to values that are appropriate for the behavior observed in your environment, rather than adjusting the global

1 Compare the key used here, ocf:heartbeat:apache with the one we used earlier for the IP address, ocf:heartbeat:IPaddr2.

2.7. Add Apache HTTP Server as a Cluster Service 43

Clusters from Scratch, Release 3.0.0

default.

Note: If you use a tool like pcs to create a resource, its operations may be automatically configured with
explicit timeout values that override the Pacemaker built-in default value of 20 seconds. If the resource
agent’s metadata contains suggested values for the operation timeouts in a particular format, pcs reads
those values and adds them to the configuration at resource creation time.

After a short delay, we should see the cluster start Apache.

[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 00:47:44 2022
* Last change: Wed Jul 27 00:47:23 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 3 resource instances configured

Node List:
* Online: [pcmk-1 pcmk-2]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Started pcmk-2

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

Wait a moment, the WebSite resource isn’t running on the same host as our IP address!

Note: If, in the pcs status output, you see the WebSite resource has failed to start, then you’ve likely
not enabled the status URL correctly. You can check whether this is the problem by running:

wget -O - http://localhost/server-status

If you see Not Found or Forbidden in the output, then this is likely the problem. Ensure that the <Location
/server-status> block is correct.

2.7.5 Ensure Resources Run on the Same Host

To reduce the load on any one machine, Pacemaker will generally try to spread the configured resources
across the cluster nodes. However, we can tell the cluster that two resources are related and need to run on
the same host (or else one of them should not run at all, if they cannot run on the same node). Here, we
instruct the cluster that WebSite can only run on the host where ClusterIP is active.

To achieve this, we use a colocation constraint that indicates it is mandatory for WebSite to run on the
same node as ClusterIP. The “mandatory” part of the colocation constraint is indicated by using a score
of INFINITY. The INFINITY score also means that if ClusterIP is not active anywhere, WebSite will not be
permitted to run.

44 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Note: If ClusterIP is not active anywhere, WebSite will not be permitted to run anywhere.

Note: INFINITY is the default score for a colocation constraint. If you don’t specify a score, INFINITY will
be used automatically.

Important: Colocation constraints are “directional”, in that they imply certain things about the order
in which the two resources will have a location chosen. In this case, we’re saying that WebSite needs to
be placed on the same machine as ClusterIP, which implies that the cluster must know the location of
ClusterIP before choosing a location for WebSite

[root@pcmk-1 ~]# pcs constraint colocation add WebSite with ClusterIP INFINITY
[root@pcmk-1 ~]# pcs constraint
Location Constraints:
Ordering Constraints:
Colocation Constraints:

WebSite with ClusterIP (score:INFINITY)
Ticket Constraints:
[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 00:49:33 2022
* Last change: Wed Jul 27 00:49:16 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 3 resource instances configured

Node List:
* Online: [pcmk-1 pcmk-2]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Started pcmk-1

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

2.7.6 Ensure Resources Start and Stop in Order

Like many services, Apache can be configured to bind to specific IP addresses on a host or to the wildcard IP
address. If Apache binds to the wildcard, it doesn’t matter whether an IP address is added before or after
Apache starts; Apache will respond on that IP just the same. However, if Apache binds only to certain IP
address(es), the order matters: If the address is added after Apache starts, Apache won’t respond on that
address.

To be sure our WebSite responds regardless of Apache’s address configuration, we need to make sure
ClusterIP not only runs on the same node, but also starts before WebSite. A colocation constraint en-
sures only that the resources run together; it doesn’t affect order in which the resources are started or

2.7. Add Apache HTTP Server as a Cluster Service 45

Clusters from Scratch, Release 3.0.0

stopped.

We do this by adding an ordering constraint. By default, all order constraints are mandatory. This means,
for example, that if ClusterIP needs to stop, then WebSite must stop first (or already be stopped); and if
WebSite needs to start, then ClusterIP must start first (or already be started). This also implies that the
recovery of ClusterIP will trigger the recovery of WebSite, causing it to be restarted.

[root@pcmk-1 ~]# pcs constraint order ClusterIP then WebSite
Adding ClusterIP WebSite (kind: Mandatory) (Options: first-action=start then-action=start)
[root@pcmk-1 ~]# pcs constraint
Location Constraints:
Ordering Constraints:

start ClusterIP then start WebSite (kind:Mandatory)
Colocation Constraints:

WebSite with ClusterIP (score:INFINITY)
Ticket Constraints:

Note: The default action in an order constraint is start If you don’t specify an action, as in the example
above, pcs automatically uses the start action.

Note: We could have placed the ClusterIP and WebSite resources into a resource group instead of
configuring constraints. A resource group is a compact and intuitive way to organize a set of resources into
a chain of colocation and ordering constraints. We will omit that in this guide; see the Pacemaker Explained
document for more details.

2.7.7 Prefer One Node Over Another

Pacemaker does not rely on any sort of hardware symmetry between nodes, so it may well be that one
machine is more powerful than the other.

In such cases, you may want to host the resources on the more powerful node when it is available, to have
the best performance – or you may want to host the resources on the less powerful node when it’s available,
so you don’t have to worry about whether you can handle the load after a failover.

To do this, we create a location constraint.

In the location constraint below, we are saying the WebSite resource prefers the node pcmk-2 with a score
of 50. Here, the score indicates how strongly we’d like the resource to run at this location.

[root@pcmk-1 ~]# pcs constraint location WebSite prefers pcmk-2=50
[root@pcmk-1 ~]# pcs constraint
Location Constraints:

Resource: WebSite
Enabled on:

Node: pcmk-2 (score:50)
Ordering Constraints:

start ClusterIP then start WebSite (kind:Mandatory)
Colocation Constraints:

WebSite with ClusterIP (score:INFINITY)
Ticket Constraints:
[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

(continues on next page)

46 Chapter 2. Table of Contents

https://www.clusterlabs.org/pacemaker/doc/

Clusters from Scratch, Release 3.0.0

(continued from previous page)
* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 00:51:13 2022
* Last change: Wed Jul 27 00:51:07 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 3 resource instances configured

Node List:
* Online: [pcmk-1 pcmk-2]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Started pcmk-1

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

Wait a minute, the resources are still on pcmk-1!

Even though WebSite now prefers to run on pcmk-2, that preference is (intentionally) less than the resource
stickiness (how much we preferred not to have unnecessary downtime).

To see the current placement scores, you can use a tool called crm_simulate.

[root@pcmk-1 ~]# crm_simulate -sL
[pcmk-1 pcmk-2]

fence_dev (stonith:some_fence_agent): Started pcmk-1
ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
WebSite (ocf:heartbeat:apache): Started pcmk-1

pcmk__native_allocate: fence_dev allocation score on pcmk-1: 100
pcmk__native_allocate: fence_dev allocation score on pcmk-2: 0
pcmk__native_allocate: ClusterIP allocation score on pcmk-1: 200
pcmk__native_allocate: ClusterIP allocation score on pcmk-2: 50
pcmk__native_allocate: WebSite allocation score on pcmk-1: 100
pcmk__native_allocate: WebSite allocation score on pcmk-2: -INFINITY

2.7.8 Move Resources Manually

There are always times when an administrator needs to override the cluster and force resources to move to
a specific location. In this example, we will force the WebSite to move to pcmk-2.

We will use the pcs resource move command to create a temporary constraint with a score of INFINITY.
While we could update our existing constraint, using move allows pcs to get rid of the temporary constraint
automatically after the resource has moved to its destination. Note in the below that the pcs constraint
output after the move command is the same as before.

[root@pcmk-1 ~]# pcs resource move WebSite pcmk-2
Location constraint to move resource 'WebSite' has been created
Waiting for the cluster to apply configuration changes...
Location constraint created to move resource 'WebSite' has been removed

(continues on next page)

2.7. Add Apache HTTP Server as a Cluster Service 47

Clusters from Scratch, Release 3.0.0

(continued from previous page)
Waiting for the cluster to apply configuration changes...
resource 'WebSite' is running on node 'pcmk-2'
[root@pcmk-1 ~]# pcs constraint
Location Constraints:

Resource: WebSite
Enabled on:

Node: pcmk-2 (score:50)
Ordering Constraints:

start ClusterIP then start WebSite (kind:Mandatory)
Colocation Constraints:

WebSite with ClusterIP (score:INFINITY)
Ticket Constraints:
[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 00:54:23 2022
* Last change: Wed Jul 27 00:53:48 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 3 resource instances configured

Node List:
* Online: [pcmk-1 pcmk-2]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-2
* WebSite (ocf:heartbeat:apache): Started pcmk-2

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

To remove the constraint with the score of 50, we would first get the constraint’s ID using pcs constraint
--full, then remove it with pcs constraint remove and the ID. We won’t show those steps here, but feel
free to try it on your own, with the help of the pcs man page if necessary.

2.8 Replicate Storage Using DRBD

Even if you’re serving up static websites, having to manually synchronize the contents of that website to all
the machines in the cluster is not ideal. For dynamic websites, such as a wiki, it’s not even an option. Not
everyone can afford network-attached storage, but somehow the data needs to be kept in sync.

Enter DRBD, which can be thought of as network-based RAID-11.

2.8.1 Install the DRBD Packages

DRBD itself is included in the upstream kernel2, but we do need some utilities to use it effectively.
1 See http://www.drbd.org for details.
2 Since version 2.6.33

48 Chapter 2. Table of Contents

http://www.drbd.org

Clusters from Scratch, Release 3.0.0

AlmaLinux does not ship these utilities, so we need to enable a third-party repository to get them. Supported
packages for many OSes are available from DRBD’s maker LINBIT, but here we’ll use the free ELRepo
repository.

On both nodes, import the ELRepo package signing key, and enable the repository:

[root@pcmk-1 ~]# rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org
[root@pcmk-1 ~]# dnf install -y https://www.elrepo.org/elrepo-release-9.el9.elrepo.noarch.rpm

Now, we can install the DRBD kernel module and utilities:

dnf install -y kmod-drbd9x drbd9x-utils

DRBD will not be able to run under the default SELinux security policies. If you are familiar with SELinux,
you can modify the policies in a more fine-grained manner, but here we will simply exempt DRBD processes
from SELinux control:

dnf install -y policycoreutils-python-utils
semanage permissive -a drbd_t

We will configure DRBD to use port 7789, so allow that port from each host to the other:

[root@pcmk-1 ~]# firewall-cmd --permanent --add-rich-rule='rule family="ipv4" \
source address="192.168.122.102" port port="7789" protocol="tcp" accept'
success
[root@pcmk-1 ~]# firewall-cmd --reload
success

[root@pcmk-2 ~]# firewall-cmd --permanent --add-rich-rule='rule family="ipv4" \
source address="192.168.122.101" port port="7789" protocol="tcp" accept'
success
[root@pcmk-2 ~]# firewall-cmd --reload
success

Note: In this example, we have only two nodes, and all network traffic is on the same LAN. In production,
it is recommended to use a dedicated, isolated network for cluster-related traffic, so the firewall configuration
would likely be different; one approach would be to add the dedicated network interfaces to the trusted zone.

Note: If the firewall-cmd --add-rich-rule command fails with Error: INVALID_RULE: unknown
element ensure that there is no space at the beginning of the second line of the command.

2.8.2 Allocate a Disk Volume for DRBD

DRBD will need its own block device on each node. This can be a physical disk partition or logical volume,
of whatever size you need for your data. For this document, we will use a 512MiB logical volume, which is
more than sufficient for a single HTML file and (later) GFS2 metadata.

[root@pcmk-1 ~]# vgs
VG #PV #LV #SN Attr VSize VFree
almalinux_pcmk-1 1 2 0 wz--n- <19.00g <13.00g

[root@pcmk-1 ~]# lvcreate --name drbd-demo --size 512M almalinux_pcmk-1
(continues on next page)

2.8. Replicate Storage Using DRBD 49

http://www.linbit.com/
http://elrepo.org/

Clusters from Scratch, Release 3.0.0

(continued from previous page)
Logical volume "drbd-demo" created.

[root@pcmk-1 ~]# lvs
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
drbd-demo almalinux_pcmk-1 -wi-a----- 512.00m
root almalinux_pcmk-1 -wi-ao---- 4.00g
swap almalinux_pcmk-1 -wi-ao---- 2.00g

Repeat for the second node, making sure to use the same size:

[root@pcmk-1 ~]# ssh pcmk-2 -- lvcreate --name drbd-demo --size 512M cs_pcmk-2
Logical volume "drbd-demo" created.

2.8.3 Configure DRBD

There is no series of commands for building a DRBD configuration, so simply run this on both nodes to use
this sample configuration:

cat <<END >/etc/drbd.d/wwwdata.res
resource "wwwdata" {

device minor 1;
meta-disk internal;

net {
protocol C;
allow-two-primaries yes;
fencing resource-and-stonith;
verify-alg sha1;

}
handlers {
fence-peer "/usr/lib/drbd/crm-fence-peer.9.sh";
unfence-peer "/usr/lib/drbd/crm-unfence-peer.9.sh";

}
on "pcmk-1" {
disk "/dev/almalinux_pcmk-1/drbd-demo";
node-id 0;

}
on "pcmk-2" {
disk "/dev/almalinux_pcmk-2/drbd-demo";
node-id 1;

}
connection {
host "pcmk-1" address 192.168.122.101:7789;
host "pcmk-2" address 192.168.122.102:7789;

}
}
END

Important: Edit the file to use the hostnames, IP addresses, and logical volume paths of your nodes if
they differ from the ones used in this guide.

Note: Detailed information on the directives used in this configuration (and other alternatives) is available
in the DRBD User’s Guide. The guide contains a wealth of information on such topics as core DRBD

50 Chapter 2. Table of Contents

https://linbit.com/drbd-user-guide/drbd-guide-9_0-en/#ch-configure

Clusters from Scratch, Release 3.0.0

concepts, replication settings, network connection options, quorum, split- brain handling, administrative
tasks, troubleshooting, and responding to disk or node failures, among others.

The allow-two-primaries: yes option would not normally be used in an active/passive cluster. We are
adding it here for the convenience of changing to an active/active cluster later.

2.8.4 Initialize DRBD

With the configuration in place, we can now get DRBD running.

These commands create the local metadata for the DRBD resource, ensure the DRBD kernel module is
loaded, and bring up the DRBD resource. Run them on one node:

[root@pcmk-1 ~]# drbdadm create-md wwwdata
initializing activity log
initializing bitmap (16 KB) to all zero
Writing meta data...
New drbd meta data block successfully created.
success

[root@pcmk-1 ~]# modprobe drbd
[root@pcmk-1 ~]# drbdadm up wwwdata

--== Thank you for participating in the global usage survey ==--
The server's response is:

you are the 25212th user to install this version

We can confirm DRBD’s status on this node:

[root@pcmk-1 ~]# drbdadm status
wwwdata role:Secondary

disk:Inconsistent
pcmk-2 connection:Connecting

Because we have not yet initialized the data, this node’s data is marked as Inconsistent Because we have
not yet initialized the second node, the pcmk-2 connection is Connecting (waiting for connection).

2.8. Replicate Storage Using DRBD 51

Clusters from Scratch, Release 3.0.0

Now, repeat the above commands on the second node, starting with creating wwwdata.res. After giving it
time to connect, when we check the status of the first node, it shows:

[root@pcmk-1 ~]# drbdadm status
wwwdata role:Secondary

disk:Inconsistent
pcmk-2 role:Secondary
peer-disk:Inconsistent

You can see that pcmk-2 connection:Connecting longer appears in the output, meaning the two DRBD
nodes are communicating properly, and both nodes are in Secondary role with Inconsistent data.

To make the data consistent, we need to tell DRBD which node should be considered to have the correct
data. In this case, since we are creating a new resource, both have garbage, so we’ll just pick pcmk-1 and
run this command on it:

[root@pcmk-1 ~]# drbdadm primary --force wwwdata

Note: If you are using a different version of DRBD, the required syntax may be different. See the
documentation for your version for how to perform these commands.

If we check the status immediately, we’ll see something like this:

[root@pcmk-1 ~]# drbdadm status
wwwdata role:Primary

disk:UpToDate
pcmk-2 role:Secondary
peer-disk:Inconsistent

It will be quickly followed by this:

[root@pcmk-1 ~]# drbdadm status
wwwdata role:Primary

disk:UpToDate
pcmk-2 role:Secondary
replication:SyncSource peer-disk:Inconsistent

We can see that the first node has the Primary role, its partner node has the Secondary role, the first node’s
data is now considered UpToDate, and the partner node’s data is still Inconsistent.

After a while, the sync should finish, and you’ll see something like:

[root@pcmk-1 ~]# drbdadm status
wwwdata role:Primary

disk:UpToDate
pcmk-1 role:Secondary
peer-disk:UpToDate

[root@pcmk-2 ~]# drbdadm status
wwwdata role:Secondary

disk:UpToDate
pcmk-1 role:Primary
peer-disk:UpToDate

Both sets of data are now UpToDate, and we can proceed to creating and populating a filesystem for our
WebSite resource’s documents.

52 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

2.8.5 Populate the DRBD Disk

On the node with the primary role (pcmk-1 in this example), create a filesystem on the DRBD device:

[root@pcmk-1 ~]# mkfs.xfs /dev/drbd1
meta-data=/dev/drbd1 isize=512 agcount=4, agsize=32765 blks

= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=0
= reflink=1

data = bsize=4096 blocks=131059, imaxpct=25
= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=1368, version=2

= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
Discarding blocks...Done.

Note: In this example, we create an xfs filesystem with no special options. In a production environment,
you should choose a filesystem type and options that are suitable for your application.

Mount the newly created filesystem, populate it with our web document, give it the same SELinux policy as
the web document root, then unmount it (the cluster will handle mounting and unmounting it later):

[root@pcmk-1 ~]# mount /dev/drbd1 /mnt
[root@pcmk-1 ~]# cat <<-END >/mnt/index.html
<html>
<body>My Test Site - DRBD</body>

</html>
END
[root@pcmk-1 ~]# chcon -R --reference=/var/www/html /mnt
[root@pcmk-1 ~]# umount /dev/drbd1

2.8.6 Configure the Cluster for the DRBD device

One handy feature pcs has is the ability to queue up several changes into a file and commit those changes
all at once. To do this, start by populating the file with the current raw XML config from the CIB.

[root@pcmk-1 ~]# pcs cluster cib drbd_cfg

Using pcs’s -f option, make changes to the configuration saved in the drbd_cfg file. These changes will not
be seen by the cluster until the drbd_cfg file is pushed into the live cluster’s CIB later.

Here, we create a cluster resource for the DRBD device, and an additional clone resource to allow the resource
to run on both nodes at the same time.

[root@pcmk-1 ~]# pcs -f drbd_cfg resource create WebData ocf:linbit:drbd \
drbd_resource=wwwdata op monitor interval=29s role=Promoted \
monitor interval=31s role=Unpromoted

[root@pcmk-1 ~]# pcs -f drbd_cfg resource promotable WebData \
promoted-max=1 promoted-node-max=1 clone-max=2 clone-node-max=1 \
notify=true

[root@pcmk-1 ~]# pcs resource status
* ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf::heartbeat:apache): Started pcmk-1

(continues on next page)

2.8. Replicate Storage Using DRBD 53

Clusters from Scratch, Release 3.0.0

(continued from previous page)
[root@pcmk-1 ~]# pcs resource config
Resource: ClusterIP (class=ocf provider=heartbeat type=IPaddr2)
Attributes: cidr_netmask=24 ip=192.168.122.120
Operations: monitor interval=30s (ClusterIP-monitor-interval-30s)

start interval=0s timeout=20s (ClusterIP-start-interval-0s)
stop interval=0s timeout=20s (ClusterIP-stop-interval-0s)

Resource: WebSite (class=ocf provider=heartbeat type=apache)
Attributes: configfile=/etc/httpd/conf/httpd.conf statusurl=http://localhost/server-status
Operations: monitor interval=1min (WebSite-monitor-interval-1min)

start interval=0s timeout=40s (WebSite-start-interval-0s)
stop interval=0s timeout=60s (WebSite-stop-interval-0s)

After you are satisfied with all the changes, you can commit them all at once by pushing the drbd_cfg file
into the live CIB.

[root@pcmk-1 ~]# pcs cluster cib-push drbd_cfg --config
CIB updated

Note: All the updates above can be done in one shot as follows:

[root@pcmk-1 ~]# pcs resource create WebData ocf:linbit:drbd \
drbd_resource=wwwdata op monitor interval=29s role=Promoted \
monitor interval=31s role=Unpromoted \
promotable promoted-max=1 promoted-node-max=1 clone-max=2 \
clone-node-max=1 notify=true

Let’s see what the cluster did with the new configuration:

[root@pcmk-1 ~]# pcs resource status
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-2
* WebSite (ocf:heartbeat:apache): Started pcmk-2
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-1]
* Unpromoted: [pcmk-2]

[root@pcmk-1 ~]# pcs resource config
Resource: ClusterIP (class=ocf provider=heartbeat type=IPaddr2)
Attributes: cidr_netmask=24 ip=192.168.122.120
Operations: monitor interval=30s (ClusterIP-monitor-interval-30s)

start interval=0s timeout=20s (ClusterIP-start-interval-0s)
stop interval=0s timeout=20s (ClusterIP-stop-interval-0s)

Resource: WebSite (class=ocf provider=heartbeat type=apache)
Attributes: configfile=/etc/httpd/conf/httpd.conf statusurl=http://localhost/server-status
Operations: monitor interval=1min (WebSite-monitor-interval-1min)

start interval=0s timeout=40s (WebSite-start-interval-0s)
stop interval=0s timeout=60s (WebSite-stop-interval-0s)

Clone: WebData-clone
Meta Attrs: clone-max=2 clone-node-max=1 notify=true promotable=true promoted-max=1 promoted-

↪→node-max=1
Resource: WebData (class=ocf provider=linbit type=drbd)
Attributes: drbd_resource=wwwdata
Operations: demote interval=0s timeout=90 (WebData-demote-interval-0s)

monitor interval=29s role=Promoted (WebData-monitor-interval-29s)
monitor interval=31s role=Unpromoted (WebData-monitor-interval-31s)
notify interval=0s timeout=90 (WebData-notify-interval-0s)

(continues on next page)

54 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

(continued from previous page)
promote interval=0s timeout=90 (WebData-promote-interval-0s)
reload interval=0s timeout=30 (WebData-reload-interval-0s)
start interval=0s timeout=240 (WebData-start-interval-0s)
stop interval=0s timeout=100 (WebData-stop-interval-0s)

We can see that WebData-clone (our DRBD device) is running as Promoted (DRBD’s primary role) on
pcmk-1 and Unpromoted (DRBD’s secondary role) on pcmk-2.

Important: The resource agent should load the DRBD module when needed if it’s not already loaded. If
that does not happen, configure your operating system to load the module at boot time. For AlmaLinux 9,
you would run this on both nodes:

echo drbd >/etc/modules-load.d/drbd.conf

2.8.7 Configure the Cluster for the Filesystem

Now that we have a working DRBD device, we need to mount its filesystem.

In addition to defining the filesystem, we also need to tell the cluster where it can be located (only on the
DRBD Primary) and when it is allowed to start (after the Primary was promoted).

We are going to take a shortcut when creating the resource this time. Instead of explicitly saying we want
the ocf:heartbeat:Filesystem script, we are only going to ask for Filesystem. We can do this because
we know there is only one resource script named Filesystem available to Pacemaker, and that pcs is smart
enough to fill in the ocf:heartbeat: portion for us correctly in the configuration. If there were multiple
Filesystem scripts from different OCF providers, we would need to specify the exact one we wanted.

Once again, we will queue our changes to a file and then push the new configuration to the cluster as the
final step.

[root@pcmk-1 ~]# pcs cluster cib fs_cfg
[root@pcmk-1 ~]# pcs -f fs_cfg resource create WebFS Filesystem \

device="/dev/drbd1" directory="/var/www/html" fstype="xfs"
Assumed agent name 'ocf:heartbeat:Filesystem' (deduced from 'Filesystem')
[root@pcmk-1 ~]# pcs -f fs_cfg constraint colocation add \

WebFS with Promoted WebData-clone
[root@pcmk-1 ~]# pcs -f fs_cfg constraint order \

promote WebData-clone then start WebFS
Adding WebData-clone WebFS (kind: Mandatory) (Options: first-action=promote then-action=start)

We also need to tell the cluster that Apache needs to run on the same machine as the filesystem and that it
must be active before Apache can start.

[root@pcmk-1 ~]# pcs -f fs_cfg constraint colocation add WebSite with WebFS
[root@pcmk-1 ~]# pcs -f fs_cfg constraint order WebFS then WebSite
Adding WebFS WebSite (kind: Mandatory) (Options: first-action=start then-action=start)

Review the updated configuration.

[root@pcmk-1 ~]# pcs -f fs_cfg constraint
Location Constraints:

Resource: WebSite
Enabled on:

(continues on next page)

2.8. Replicate Storage Using DRBD 55

Clusters from Scratch, Release 3.0.0

(continued from previous page)
Node: pcmk-1 (score:50)

Ordering Constraints:
start ClusterIP then start WebSite (kind:Mandatory)
promote WebData-clone then start WebFS (kind:Mandatory)
start WebFS then start WebSite (kind:Mandatory)

Colocation Constraints:
WebSite with ClusterIP (score:INFINITY)
WebFS with WebData-clone (score:INFINITY) (rsc-role:Started) (with-rsc-role:Promoted)
WebSite with WebFS (score:INFINITY)

Ticket Constraints:

After reviewing the new configuration, upload it and watch the cluster put it into effect.

[root@pcmk-1 ~]# pcs cluster cib-push fs_cfg --config
CIB updated
[root@pcmk-1 ~]# pcs resource status

* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-2
* WebSite (ocf:heartbeat:apache): Started pcmk-2
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-2]
* Unpromoted: [pcmk-1]

* WebFS (ocf:heartbeat:Filesystem): Started pcmk-2
[root@pcmk-1 ~]# pcs resource config
Resource: ClusterIP (class=ocf provider=heartbeat type=IPaddr2)
Attributes: cidr_netmask=24 ip=192.168.122.120
Operations: monitor interval=30s (ClusterIP-monitor-interval-30s)

start interval=0s timeout=20s (ClusterIP-start-interval-0s)
stop interval=0s timeout=20s (ClusterIP-stop-interval-0s)

Resource: WebSite (class=ocf provider=heartbeat type=apache)
Attributes: configfile=/etc/httpd/conf/httpd.conf statusurl=http://localhost/server-status
Operations: monitor interval=1min (WebSite-monitor-interval-1min)

start interval=0s timeout=40s (WebSite-start-interval-0s)
stop interval=0s timeout=60s (WebSite-stop-interval-0s)

Clone: WebData-clone
Meta Attrs: clone-max=2 clone-node-max=1 notify=true promotable=true promoted-max=1 promoted-

↪→node-max=1
Resource: WebData (class=ocf provider=linbit type=drbd)
Attributes: drbd_resource=wwwdata
Operations: demote interval=0s timeout=90 (WebData-demote-interval-0s)

monitor interval=29s role=Promoted (WebData-monitor-interval-29s)
monitor interval=31s role=Unpromoted (WebData-monitor-interval-31s)
notify interval=0s timeout=90 (WebData-notify-interval-0s)
promote interval=0s timeout=90 (WebData-promote-interval-0s)
reload interval=0s timeout=30 (WebData-reload-interval-0s)
start interval=0s timeout=240 (WebData-start-interval-0s)
stop interval=0s timeout=100 (WebData-stop-interval-0s)

Resource: WebFS (class=ocf provider=heartbeat type=Filesystem)
Attributes: device=/dev/drbd1 directory=/var/www/html fstype=xfs
Operations: monitor interval=20s timeout=40s (WebFS-monitor-interval-20s)

start interval=0s timeout=60s (WebFS-start-interval-0s)
stop interval=0s timeout=60s (WebFS-stop-interval-0s)

2.8.8 Test Cluster Failover

Previously, we used pcs cluster stop pcmk-2 to stop all cluster services on pcmk-2, failing over the cluster
resources, but there is another way to safely simulate node failure.

56 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

We can put the node into standby mode. Nodes in this state continue to run corosync and pacemaker but
are not allowed to run resources. Any resources found active there will be moved elsewhere. This feature
can be particularly useful when performing system administration tasks such as updating packages used by
cluster resources.

Put the active node into standby mode, and observe the cluster move all the resources to the other node.
The node’s status will change to indicate that it can no longer host resources, and eventually all the resources
will move.

[root@pcmk-1 ~]# pcs node standby pcmk-2
[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 05:28:01 2022
* Last change: Wed Jul 27 05:27:57 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 6 resource instances configured

Node List:
* Node pcmk-2: standby
* Online: [pcmk-1]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Started pcmk-1
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-1]
* Stopped: [pcmk-2]

* WebFS (ocf:heartbeat:Filesystem): Started pcmk-1

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

Once we’ve done everything we needed to on pcmk-2 (in this case nothing, we just wanted to see the resources
move), we can unstandby the node, making it eligible to host resources again.

[root@pcmk-1 ~]# pcs node unstandby pcmk-2
[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 05:28:50 2022
* Last change: Wed Jul 27 05:28:47 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 6 resource instances configured

Node List:
* Online: [pcmk-1 pcmk-2]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1

(continues on next page)

2.8. Replicate Storage Using DRBD 57

Clusters from Scratch, Release 3.0.0

(continued from previous page)
* WebSite (ocf:heartbeat:apache): Started pcmk-1
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-1]
* Unpromoted: [pcmk-2]

* WebFS (ocf:heartbeat:Filesystem): Started pcmk-1

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

Notice that pcmk-2 is back to the Online state, and that the cluster resources stay where they are due to
our resource stickiness settings configured earlier.

2.9 Convert Storage to Active/Active

The primary requirement for an active/active cluster is that the data required for your services is available,
simultaneously, on both machines. Pacemaker makes no requirement on how this is achieved; you could use
a Storage Area Network (SAN) if you had one available, but since DRBD supports multiple Primaries, we
can continue to use it here.

2.9.1 Install Cluster Filesystem Software

The only hitch is that we need to use a cluster-aware filesystem. The one we used earlier with DRBD, xfs,
is not one of those. Both OCFS2 and GFS2 are supported; here, we will use GFS2.

On both nodes, install Distributed Lock Manager (DLM) and the GFS2 command- line utilities required by
cluster filesystems:

dnf config-manager --set-enabled resilientstorage
dnf install -y dlm gfs2-utils

2.9.2 Configure the Cluster for the DLM

The DLM control daemon needs to run on both nodes, so we’ll start by creating a resource for it (using the
ocf:pacemaker:controld resource agent), and clone it:

[root@pcmk-1 ~]# pcs cluster cib dlm_cfg
[root@pcmk-1 ~]# pcs -f dlm_cfg resource create dlm \

ocf:pacemaker:controld op monitor interval=60s
[root@pcmk-1 ~]# pcs -f dlm_cfg resource clone dlm clone-max=2 clone-node-max=1
[root@pcmk-1 ~]# pcs resource status

* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Started pcmk-1
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-1]
* Unpromoted: [pcmk-2]

* WebFS (ocf:heartbeat:Filesystem): Started pcmk-1

Activate our new configuration, and see how the cluster responds:

58 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

[root@pcmk-1 ~]# pcs cluster cib-push dlm_cfg --config
CIB updated
[root@pcmk-1 ~]# pcs resource status

* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Started pcmk-1
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-1]
* Unpromoted: [pcmk-2]

* WebFS (ocf:heartbeat:Filesystem): Started pcmk-1
* Clone Set: dlm-clone [dlm]:
* Started: [pcmk-1 pcmk-2]

[root@pcmk-1 ~]# pcs resource config
Resource: ClusterIP (class=ocf provider=heartbeat type=IPaddr2)
Attributes: cidr_netmask=24 ip=192.168.122.120
Operations: monitor interval=30s (ClusterIP-monitor-interval-30s)

start interval=0s timeout=20s (ClusterIP-start-interval-0s)
stop interval=0s timeout=20s (ClusterIP-stop-interval-0s)

Resource: WebSite (class=ocf provider=heartbeat type=apache)
Attributes: configfile=/etc/httpd/conf/httpd.conf statusurl=http://localhost/server-status
Operations: monitor interval=1min (WebSite-monitor-interval-1min)

start interval=0s timeout=40s (WebSite-start-interval-0s)
stop interval=0s timeout=60s (WebSite-stop-interval-0s)

Clone: WebData-clone
Meta Attrs: clone-max=2 clone-node-max=1 notify=true promotable=true promoted-max=1 promoted-

↪→node-max=1
Resource: WebData (class=ocf provider=linbit type=drbd)
Attributes: drbd_resource=wwwdata
Operations: demote interval=0s timeout=90 (WebData-demote-interval-0s)

monitor interval=29s role=Promoted (WebData-monitor-interval-29s)
monitor interval=31s role=Unpromoted (WebData-monitor-interval-31s)
notify interval=0s timeout=90 (WebData-notify-interval-0s)
promote interval=0s timeout=90 (WebData-promote-interval-0s)
reload interval=0s timeout=30 (WebData-reload-interval-0s)
start interval=0s timeout=240 (WebData-start-interval-0s)
stop interval=0s timeout=100 (WebData-stop-interval-0s)

Resource: WebFS (class=ocf provider=heartbeat type=Filesystem)
Attributes: device=/dev/drbd1 directory=/var/www/html fstype=xfs
Operations: monitor interval=20s timeout=40s (WebFS-monitor-interval-20s)

start interval=0s timeout=60s (WebFS-start-interval-0s)
stop interval=0s timeout=60s (WebFS-stop-interval-0s)

Clone: dlm-clone
Meta Attrs: interleave=true ordered=true
Resource: dlm (class=ocf provider=pacemaker type=controld)
Operations: monitor interval=60s (dlm-monitor-interval-60s)

start interval=0s timeout=90s (dlm-start-interval-0s)
stop interval=0s timeout=100s (dlm-stop-interval-0s)

2.9.3 Create and Populate GFS2 Filesystem

Before we do anything to the existing partition, we need to make sure it is unmounted. We do this by telling
the cluster to stop the WebFS resource. This will ensure that other resources (in our case, WebSite) using
WebFS are not only stopped, but stopped in the correct order.

[root@pcmk-1 ~]# pcs resource disable WebFS
[root@pcmk-1 ~]# pcs resource

(continues on next page)

2.9. Convert Storage to Active/Active 59

Clusters from Scratch, Release 3.0.0

(continued from previous page)
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Stopped
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-1]
* Unpromoted: [pcmk-2]

* WebFS (ocf:heartbeat:Filesystem): Stopped (disabled)
* Clone Set: dlm-clone [dlm]:
* Started: [pcmk-1 pcmk-2]

You can see that both WebSite and WebFS have been stopped, and that pcmk-1 is currently running the
promoted instance for the DRBD device.

Now we can create a new GFS2 filesystem on the DRBD device.

Warning: This will erase all previous content stored on the DRBD device. Ensure you have a copy of
any important data.

Important: Run the next command on whichever node has the DRBD Primary role. Otherwise, you will
receive the message:

/dev/drbd1: Read-only file system

[root@pcmk-1 ~]# mkfs.gfs2 -p lock_dlm -j 2 -t mycluster:web /dev/drbd1
It appears to contain an existing filesystem (xfs)
This will destroy any data on /dev/drbd1
Are you sure you want to proceed? [y/n] y
Discarding device contents (may take a while on large devices): Done
Adding journals: Done
Building resource groups: Done
Creating quota file: Done
Writing superblock and syncing: Done
Device: /dev/drbd1
Block size: 4096
Device size: 0.50 GB (131059 blocks)
Filesystem size: 0.50 GB (131055 blocks)
Journals: 2
Journal size: 8MB
Resource groups: 4
Locking protocol: "lock_dlm"
Lock table: "mycluster:web"
UUID: 19712677-7206-4660-a079-5d17341dd720

The mkfs.gfs2 command required a number of additional parameters:

• -p lock_dlm specifies that we want to use DLM-based locking.

• -j 2 indicates that the filesystem should reserve enough space for two journals (one for each node that
will access the filesystem).

• -t mycluster:web specifies the lock table name. The format for this field is
<CLUSTERNAME>:<FSNAME>. For CLUSTERNAME, we need to use the same value we specified originally
with pcs cluster setup --name (which is also the value of cluster_name in /etc/corosync/
corosync.conf). If you are unsure what your cluster name is, you can look in /etc/corosync/
corosync.conf or execute the command pcs cluster corosync | grep cluster_name.

60 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

Now we can (re-)populate the new filesystem with data (web pages). We’ll create yet another variation on
our home page.

[root@pcmk-1 ~]# mount /dev/drbd1 /mnt
[root@pcmk-1 ~]# cat <<-END >/mnt/index.html
<html>
<body>My Test Site - GFS2</body>
</html>
END
[root@pcmk-1 ~]# chcon -R --reference=/var/www/html /mnt
[root@pcmk-1 ~]# umount /dev/drbd1
[root@pcmk-1 ~]# drbdadm verify wwwdata

2.9.4 Reconfigure the Cluster for GFS2

With the WebFS resource stopped, let’s update the configuration.

[root@pcmk-1 ~]# pcs resource config WebFS
Resource: WebFS (class=ocf provider=heartbeat type=Filesystem)
Attributes: device=/dev/drbd1 directory=/var/www/html fstype=xfs
Meta Attrs: target-role=Stopped
Operations: monitor interval=20s timeout=40s (WebFS-monitor-interval-20s)

start interval=0s timeout=60s (WebFS-start-interval-0s)
stop interval=0s timeout=60s (WebFS-stop-interval-0s)

The fstype option needs to be updated to gfs2 instead of xfs.

[root@pcmk-1 ~]# pcs resource update WebFS fstype=gfs2
[root@pcmk-1 ~]# pcs resource config WebFS
Resource: WebFS (class=ocf provider=heartbeat type=Filesystem)
Attributes: device=/dev/drbd1 directory=/var/www/html fstype=gfs2
Meta Attrs: target-role=Stopped
Operations: monitor interval=20s timeout=40s (WebFS-monitor-interval-20s)

start interval=0s timeout=60s (WebFS-start-interval-0s)
stop interval=0s timeout=60s (WebFS-stop-interval-0s)

GFS2 requires that DLM be running, so we also need to set up new colocation and ordering constraints for
it:

[root@pcmk-1 ~]# pcs constraint colocation add WebFS with dlm-clone
[root@pcmk-1 ~]# pcs constraint order dlm-clone then WebFS
Adding dlm-clone WebFS (kind: Mandatory) (Options: first-action=start then-action=start)
[root@pcmk-1 ~]# pcs constraint
Location Constraints:

Resource: WebSite
Enabled on:

Node: pcmk-2 (score:50)
Ordering Constraints:

start ClusterIP then start WebSite (kind:Mandatory)
promote WebData-clone then start WebFS (kind:Mandatory)
start WebFS then start WebSite (kind:Mandatory)
start dlm-clone then start WebFS (kind:Mandatory)

Colocation Constraints:
WebSite with ClusterIP (score:INFINITY)
WebFS with WebData-clone (score:INFINITY) (rsc-role:Started) (with-rsc-role:Promoted)
WebSite with WebFS (score:INFINITY)

(continues on next page)

2.9. Convert Storage to Active/Active 61

Clusters from Scratch, Release 3.0.0

(continued from previous page)
WebFS with dlm-clone (score:INFINITY)

Ticket Constraints:

We also need to update the no-quorum-policy property to freeze. By default, the value of
no-quorum-policy is set to stop indicating that once quorum is lost, all the resources on the remain-
ing partition will immediately be stopped. Typically this default is the safest and most optimal option,
but unlike most resources, GFS2 requires quorum to function. When quorum is lost both the applications
using the GFS2 mounts and the GFS2 mount itself cannot be correctly stopped. Any attempts to stop these
resources without quorum will fail, which will ultimately result in the entire cluster being fenced every time
quorum is lost.

To address this situation, set no-quorum-policy to freeze when GFS2 is in use. This means that when
quorum is lost, the remaining partition will do nothing until quorum is regained.

[root@pcmk-1 ~]# pcs property set no-quorum-policy=freeze

2.9.5 Clone the Filesystem Resource

Now that we have a cluster filesystem ready to go, we can configure the cluster so both nodes mount the
filesystem.

Clone the Filesystem resource in a new configuration. Notice how pcs automatically updates the relevant
constraints again.

[root@pcmk-1 ~]# pcs cluster cib active_cfg
[root@pcmk-1 ~]# pcs -f active_cfg resource clone WebFS
[root@pcmk-1 ~]# pcs -f active_cfg constraint
Location Constraints:

Resource: WebSite
Enabled on:

Node: pcmk-2 (score:50)
Ordering Constraints:

start ClusterIP then start WebSite (kind:Mandatory)
promote WebData-clone then start WebFS-clone (kind:Mandatory)
start WebFS-clone then start WebSite (kind:Mandatory)
start dlm-clone then start WebFS-clone (kind:Mandatory)

Colocation Constraints:
WebSite with ClusterIP (score:INFINITY)
WebFS-clone with WebData-clone (score:INFINITY) (rsc-role:Started) (with-rsc-role:Promoted)
WebSite with WebFS-clone (score:INFINITY)
WebFS-clone with dlm-clone (score:INFINITY)

Ticket Constraints:

Tell the cluster that it is now allowed to promote both instances to be DRBD Primary.

[root@pcmk-1 ~]# pcs -f active_cfg resource update WebData-clone promoted-max=2

Finally, load our configuration to the cluster, and re-enable the WebFS resource (which we disabled earlier).

[root@pcmk-1 ~]# pcs cluster cib-push active_cfg --config
CIB updated
[root@pcmk-1 ~]# pcs resource enable WebFS

After all the processes are started, the status should look similar to this.

62 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

[root@pcmk-1 ~]# pcs resource
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Started pcmk-1
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-1 pcmk-2]

* Clone Set: dlm-clone [dlm]:
* Started: [pcmk-1 pcmk-2]

* Clone Set: WebFS-clone [WebFS]:
* Started: [pcmk-1 pcmk-2]

2.9.6 Test Failover

Testing failover is left as an exercise for the reader.

With this configuration, the data is now active/active. The website administrator could change HTML files
on either node, and the live website will show the changes even if it is running on the opposite node.

If the web server is configured to listen on all IP addresses, it is possible to remove the constraints between
the WebSite and ClusterIP resources, and clone the WebSite resource. The web server would always be
ready to serve web pages, and only the IP address would need to be moved in a failover.

2.10 Configuration Recap

2.10.1 Final Cluster Configuration

[root@pcmk-1 ~]# pcs resource
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Started pcmk-1
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-1 pcmk-2]

* Clone Set: dlm-clone [dlm]:
* Started: [pcmk-1 pcmk-2]

* Clone Set: WebFS-clone [WebFS]:
* Started: [pcmk-1 pcmk-2]

[root@pcmk-1 ~]# pcs resource op defaults
Meta Attrs: op_defaults-meta_attributes

timeout=240s

[root@pcmk-1 ~]# pcs stonith
* fence_dev (stonith:some_fence_agent): Started pcmk-1

[root@pcmk-1 ~]# pcs constraint
Location Constraints:

Resource: WebSite
Enabled on:

Node: pcmk-2 (score:50)
Ordering Constraints:

start ClusterIP then start WebSite (kind:Mandatory)
promote WebData-clone then start WebFS-clone (kind:Mandatory)
start WebFS-clone then start WebSite (kind:Mandatory)
start dlm-clone then start WebFS-clone (kind:Mandatory)

(continues on next page)

2.10. Configuration Recap 63

Clusters from Scratch, Release 3.0.0

(continued from previous page)
Colocation Constraints:

WebSite with ClusterIP (score:INFINITY)
WebFS-clone with WebData-clone (score:INFINITY) (rsc-role:Started) (with-rsc-role:Promoted)
WebSite with WebFS-clone (score:INFINITY)
WebFS-clone with dlm-clone (score:INFINITY)

Ticket Constraints:

[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync
* Current DC: pcmk-1 (version 2.1.2-4.el9-ada5c3b36e2) - partition with quorum
* Last updated: Wed Jul 27 08:57:57 2022
* Last change: Wed Jul 27 08:55:00 2022 by root via cibadmin on pcmk-1
* 2 nodes configured
* 9 resource instances configured

Node List:
* Online: [pcmk-1 pcmk-2]

Full List of Resources:
* fence_dev (stonith:some_fence_agent): Started pcmk-1
* ClusterIP (ocf:heartbeat:IPaddr2): Started pcmk-1
* WebSite (ocf:heartbeat:apache): Started pcmk-1
* Clone Set: WebData-clone [WebData] (promotable):
* Promoted: [pcmk-1 pcmk-2]

* Clone Set: dlm-clone [dlm]:
* Started: [pcmk-1 pcmk-2]

* Clone Set: WebFS-clone [WebFS]:
* Started: [pcmk-1 pcmk-2]

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

[root@pcmk-1 ~]# pcs config
Cluster Name: mycluster
Corosync Nodes:
pcmk-1 pcmk-2
Pacemaker Nodes:
pcmk-1 pcmk-2

Resources:
Resource: ClusterIP (class=ocf provider=heartbeat type=IPaddr2)
Attributes: cidr_netmask=24 ip=192.168.122.120
Operations: monitor interval=30s (ClusterIP-monitor-interval-30s)

start interval=0s timeout=20s (ClusterIP-start-interval-0s)
stop interval=0s timeout=20s (ClusterIP-stop-interval-0s)

Resource: WebSite (class=ocf provider=heartbeat type=apache)
Attributes: configfile=/etc/httpd/conf/httpd.conf statusurl=http://localhost/server-status
Operations: monitor interval=1min (WebSite-monitor-interval-1min)

start interval=0s timeout=40s (WebSite-start-interval-0s)
stop interval=0s timeout=60s (WebSite-stop-interval-0s)

Clone: WebData-clone
Meta Attrs: clone-max=2 clone-node-max=1 notify=true promotable=true promoted-max=2 promoted-

↪→node-max=1 (continues on next page)

64 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

(continued from previous page)
Resource: WebData (class=ocf provider=linbit type=drbd)
Attributes: drbd_resource=wwwdata
Operations: demote interval=0s timeout=90 (WebData-demote-interval-0s)

monitor interval=29s role=Promoted (WebData-monitor-interval-29s)
monitor interval=31s role=Unpromoted (WebData-monitor-interval-31s)
notify interval=0s timeout=90 (WebData-notify-interval-0s)
promote interval=0s timeout=90 (WebData-promote-interval-0s)
reload interval=0s timeout=30 (WebData-reload-interval-0s)
start interval=0s timeout=240 (WebData-start-interval-0s)
stop interval=0s timeout=100 (WebData-stop-interval-0s)

Clone: dlm-clone
Meta Attrs: interleave=true ordered=true
Resource: dlm (class=ocf provider=pacemaker type=controld)
Operations: monitor interval=60s (dlm-monitor-interval-60s)

start interval=0s timeout=90s (dlm-start-interval-0s)
stop interval=0s timeout=100s (dlm-stop-interval-0s)

Clone: WebFS-clone
Resource: WebFS (class=ocf provider=heartbeat type=Filesystem)
Attributes: device=/dev/drbd1 directory=/var/www/html fstype=gfs2
Operations: monitor interval=20s timeout=40s (WebFS-monitor-interval-20s)

start interval=0s timeout=60s (WebFS-start-interval-0s)
stop interval=0s timeout=60s (WebFS-stop-interval-0s)

Stonith Devices:
Resource: fence_dev (class=stonith type=some_fence_agent)
Attributes: pcmk_delay_base=pcmk-1:5s;pcmk-2:0s pcmk_host_map=pcmk-1:almalinux9-1;pcmk-

↪→2:almalinux9-2
Operations: monitor interval=60s (fence_dev-monitor-interval-60s)

Fencing Levels:

Location Constraints:
Resource: WebSite
Enabled on:

Node: pcmk-2 (score:50) (id:location-WebSite-pcmk-2-50)
Ordering Constraints:

start ClusterIP then start WebSite (kind:Mandatory) (id:order-ClusterIP-WebSite-mandatory)
promote WebData-clone then start WebFS-clone (kind:Mandatory) (id:order-WebData-clone-WebFS-

↪→mandatory)
start WebFS-clone then start WebSite (kind:Mandatory) (id:order-WebFS-WebSite-mandatory)
start dlm-clone then start WebFS-clone (kind:Mandatory) (id:order-dlm-clone-WebFS-mandatory)

Colocation Constraints:
WebSite with ClusterIP (score:INFINITY) (id:colocation-WebSite-ClusterIP-INFINITY)
WebFS-clone with WebData-clone (score:INFINITY) (rsc-role:Started) (with-rsc-role:Promoted)␣

↪→(id:colocation-WebFS-WebData-clone-INFINITY)
WebSite with WebFS-clone (score:INFINITY) (id:colocation-WebSite-WebFS-INFINITY)
WebFS-clone with dlm-clone (score:INFINITY) (id:colocation-WebFS-dlm-clone-INFINITY)

Ticket Constraints:

Alerts:
No alerts defined

Resources Defaults:
Meta Attrs: build-resource-defaults
resource-stickiness=100

Operations Defaults:
Meta Attrs: op_defaults-meta_attributes

(continues on next page)

2.10. Configuration Recap 65

Clusters from Scratch, Release 3.0.0

(continued from previous page)
timeout=240s

Cluster Properties:
cluster-infrastructure: corosync
cluster-name: mycluster
dc-version: 2.1.2-4.el9-ada5c3b36e2
have-watchdog: false
last-lrm-refresh: 1658896047
no-quorum-policy: freeze
stonith-enabled: true

Tags:
No tags defined

Quorum:
Options:

2.10.2 Node List

[root@pcmk-1 ~]# pcs status nodes
Pacemaker Nodes:
Online: pcmk-1 pcmk-2
Standby:
Standby with resource(s) running:
Maintenance:
Offline:
Pacemaker Remote Nodes:
Online:
Standby:
Standby with resource(s) running:
Maintenance:
Offline:

2.10.3 Cluster Options

[root@pcmk-1 ~]# pcs property
Cluster Properties:
cluster-infrastructure: corosync
cluster-name: mycluster
dc-version: 2.1.2-4.el9-ada5c3b36e2
have-watchdog: false
no-quorum-policy: freeze
stonith-enabled: true

The output shows cluster-wide configuration options, as well as some baseline- level state information. The
output includes:

• cluster-infrastructure - the cluster communications layer in use

• cluster-name - the cluster name chosen by the administrator when the cluster was created

• dc-version - the version (including upstream source-code hash) of pacemaker used on the Designated
Controller, which is the node elected to determine what actions are needed when events occur

66 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

• have-watchdog - whether watchdog integration is enabled; set automatically when SBD is enabled

• stonith-enabled - whether nodes may be fenced as part of recovery

Note: This command is equivalent to pcs property config.

2.10.4 Resources

Default Options

[root@pcmk-1 ~]# pcs resource defaults
Meta Attrs: build-resource-defaults

resource-stickiness=100

This shows cluster option defaults that apply to every resource that does not explicitly set the option itself.
Above:

• resource-stickiness - Specify how strongly a resource prefers to remain on its current node. Alter-
natively, you can view this as the level of aversion to moving healthy resources to other machines.

Fencing

[root@pcmk-1 ~]# pcs stonith status
* fence_dev (stonith:some_fence_agent): Started pcmk-1

[root@pcmk-1 ~]# pcs stonith config
Resource: fence_dev (class=stonith type=some_fence_agent)
Attributes: pcmk_delay_base=pcmk-1:5s;pcmk-2:0s pcmk_host_map=pcmk-1:almalinux9-1;pcmk-

↪→2:almalinux9-2
Operations: monitor interval=60s (fence_dev-monitor-interval-60s)

Service Address

Users of the services provided by the cluster require an unchanging address with which to access it.

[root@pcmk-1 ~]# pcs resource config ClusterIP
Resource: ClusterIP (class=ocf provider=heartbeat type=IPaddr2)
Attributes: cidr_netmask=24 ip=192.168.122.120
Operations: monitor interval=30s (ClusterIP-monitor-interval-30s)

start interval=0s timeout=20s (ClusterIP-start-interval-0s)
stop interval=0s timeout=20s (ClusterIP-stop-interval-0s)

DRBD - Shared Storage

Here, we define the DRBD service and specify which DRBD resource (from /etc/drbd.d/*.res) it should
manage. We make it a promotable clone resource and, in order to have an active/active setup, allow both
instances to be promoted at the same time. We also set the notify option so that the cluster will tell the
drbd agent when its peer changes state.

2.10. Configuration Recap 67

Clusters from Scratch, Release 3.0.0

[root@pcmk-1 ~]# pcs resource config WebData-clone
Clone: WebData-clone
Meta Attrs: clone-max=2 clone-node-max=1 notify=true promotable=true promoted-max=2 promoted-

↪→node-max=1
Resource: WebData (class=ocf provider=linbit type=drbd)
Attributes: drbd_resource=wwwdata
Operations: demote interval=0s timeout=90 (WebData-demote-interval-0s)

monitor interval=29s role=Promoted (WebData-monitor-interval-29s)
monitor interval=31s role=Unpromoted (WebData-monitor-interval-31s)
notify interval=0s timeout=90 (WebData-notify-interval-0s)
promote interval=0s timeout=90 (WebData-promote-interval-0s)
reload interval=0s timeout=30 (WebData-reload-interval-0s)
start interval=0s timeout=240 (WebData-start-interval-0s)
stop interval=0s timeout=100 (WebData-stop-interval-0s)

[root@pcmk-1 ~]# pcs constraint ref WebData-clone
Resource: WebData-clone

colocation-WebFS-WebData-clone-INFINITY
order-WebData-clone-WebFS-mandatory

Cluster Filesystem

The cluster filesystem ensures that files are read and written correctly. We need to specify the block device
(provided by DRBD), where we want it mounted and that we are using GFS2. Again, it is a clone because
it is intended to be active on both nodes. The additional constraints ensure that it can only be started on
nodes with active DLM and DRBD instances.

[root@pcmk-1 ~]# pcs resource config WebFS-clone
Clone: WebFS-clone
Resource: WebFS (class=ocf provider=heartbeat type=Filesystem)
Attributes: device=/dev/drbd1 directory=/var/www/html fstype=gfs2
Operations: monitor interval=20s timeout=40s (WebFS-monitor-interval-20s)

start interval=0s timeout=60s (WebFS-start-interval-0s)
stop interval=0s timeout=60s (WebFS-stop-interval-0s)

[root@pcmk-1 ~]# pcs constraint ref WebFS-clone
Resource: WebFS-clone

colocation-WebFS-WebData-clone-INFINITY
colocation-WebSite-WebFS-INFINITY
colocation-WebFS-dlm-clone-INFINITY
order-WebData-clone-WebFS-mandatory
order-WebFS-WebSite-mandatory
order-dlm-clone-WebFS-mandatory

Apache

Lastly, we have the actual service, Apache. We need only tell the cluster where to find its main configuration
file and restrict it to running on a node that has the required filesystem mounted and the IP address active.

[root@pcmk-1 ~]# pcs resource config WebSite
Resource: WebSite (class=ocf provider=heartbeat type=apache)
Attributes: configfile=/etc/httpd/conf/httpd.conf statusurl=http://localhost/server-status
Operations: monitor interval=1min (WebSite-monitor-interval-1min)

start interval=0s timeout=40s (WebSite-start-interval-0s)
stop interval=0s timeout=60s (WebSite-stop-interval-0s)

[root@pcmk-1 ~]# pcs constraint ref WebSite
(continues on next page)

68 Chapter 2. Table of Contents

Clusters from Scratch, Release 3.0.0

(continued from previous page)
Resource: WebSite

colocation-WebSite-ClusterIP-INFINITY
colocation-WebSite-WebFS-INFINITY
location-WebSite-pcmk-2-50
order-ClusterIP-WebSite-mandatory
order-WebFS-WebSite-mandatory

2.11 Sample Corosync Configuration

Sample corosync.conf for two-node cluster created by pcs.

totem {
version: 2
cluster_name: mycluster
transport: knet
crypto_cipher: aes256
crypto_hash: sha256
cluster_uuid: e592f61f916943978bdf7c046a195980

}

nodelist {
node {

ring0_addr: pcmk-1
name: pcmk-1
nodeid: 1

}

node {
ring0_addr: pcmk-2
name: pcmk-2
nodeid: 2

}
}

quorum {
provider: corosync_votequorum
two_node: 1

}

logging {
to_logfile: yes
logfile: /var/log/cluster/corosync.log
to_syslog: yes
timestamp: on

}

2.12 Further Reading

• Project Website https://www.clusterlabs.org/

2.11. Sample Corosync Configuration 69

https://www.clusterlabs.org/

Clusters from Scratch, Release 3.0.0

• SuSE has a comprehensive guide to cluster commands (though using the crmsh command-line shell
rather than pcs) at: https://www.suse.com/documentation/sle_ha/book_sleha/data/book_sleha.
html

• Corosync http://www.corosync.org/

70 Chapter 2. Table of Contents

https://www.suse.com/documentation/sle_ha/book_sleha/data/book_sleha.html
https://www.suse.com/documentation/sle_ha/book_sleha/data/book_sleha.html
http://www.corosync.org/

CHAPTER

THREE

INDEX

• genindex

• search

71

Clusters from Scratch, Release 3.0.0

72 Chapter 3. Index

INDEX

A
Apache HTTP Server, 42

resource, 43
status URL, 43

C
clone

filesystem, 62
colocation constraint, 44
constraint

colocation, 44
location, 46
ordering, 45

D
DLM, 58
DRBD

storage, 48

F
fencing, 34

device, 34
filesystem

clone, 62
GFS2, 58

firewall, 26

G
GFS2, 58

I
IP address

resource, 38

L
location constraint, 46

N
node

short name, 23

O
ordering constraint, 45

R
resource

Apache HTTP Server, 43
IP address, 38
moving manually, 47

S
SSH, 24

key, 24
stickiness, 41
storage

active/active, 58
DRBD, 48

73

	Abstract
	Table of Contents
	Introduction
	The Scope of This Document
	What Is Pacemaker?

	Installation
	Install AlmaLinux 9
	Configure the OS
	Repeat for Second Node
	Configure Communication Between Nodes

	Set up a Cluster
	Simplify Administration With a Cluster Shell
	Install the Cluster Software
	Configure the Cluster Software
	Explore pcs

	Start and Verify Cluster
	Start the Cluster
	Verify Corosync Installation
	Verify Pacemaker Installation
	Explore the Existing Configuration

	Configure Fencing
	What is Fencing?
	Choose a Fence Device
	Configure the Cluster for Fencing
	Example

	Create an Active/Passive Cluster
	Add a Resource
	Perform a Failover
	Prevent Resources from Moving after Recovery

	Add Apache HTTP Server as a Cluster Service
	Install Apache
	Create Website Documents
	Enable the Apache Status URL
	Configure the Cluster
	Ensure Resources Run on the Same Host
	Ensure Resources Start and Stop in Order
	Prefer One Node Over Another
	Move Resources Manually

	Replicate Storage Using DRBD
	Install the DRBD Packages
	Allocate a Disk Volume for DRBD
	Configure DRBD
	Initialize DRBD
	Populate the DRBD Disk
	Configure the Cluster for the DRBD device
	Configure the Cluster for the Filesystem
	Test Cluster Failover

	Convert Storage to Active/Active
	Install Cluster Filesystem Software
	Configure the Cluster for the DLM
	Create and Populate GFS2 Filesystem
	Reconfigure the Cluster for GFS2
	Clone the Filesystem Resource
	Test Failover

	Configuration Recap
	Final Cluster Configuration
	Node List
	Cluster Options
	Resources

	Sample Corosync Configuration
	Further Reading

	Index
	Index

